This thesis work is dedicated to the design of a lightweight compression technique for the real-time processing of biomedical signals in wearable devices. The proposed approach exploits the unsupervised learning algorithm of the time-adaptive self-organizing map (TASOM) to create a subject-adaptive codebook applied to the vector quantization of a signal. The codebook is obtained and then dynamically refined in an online fashion, without requiring any prior information on the signal itself
Biometric signals compression with time- and subject-adaptive dictionary for wearable devices
Vadori, Valentina
2015/2016
Abstract
This thesis work is dedicated to the design of a lightweight compression technique for the real-time processing of biomedical signals in wearable devices. The proposed approach exploits the unsupervised learning algorithm of the time-adaptive self-organizing map (TASOM) to create a subject-adaptive codebook applied to the vector quantization of a signal. The codebook is obtained and then dynamically refined in an online fashion, without requiring any prior information on the signal itselfFile in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Tesi_Magistrale_Valentina_VADORI_1081435.pdf
accesso aperto
Dimensione
3.15 MB
Formato
Adobe PDF
|
3.15 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/20.500.12608/19857