This thesis evaluates the use of a probabilistic model, the Gaussian Mixture Model (GMM), trained through Electromyography (EMG) signals to estimate the bending angle of a single human joint. The GMM is created from the EMG signals collected by different people and the goal is to create a general model based on the data of different subjects. The model is then tested on new, unseen data. The goodness of the estimated data is evaluated by means of Normalized Mean Square Error
Subject-independent modeling of sEMG signals for the motion of a single robot joint through GMM Modelization
Stival, Francesca
2015/2016
Abstract
This thesis evaluates the use of a probabilistic model, the Gaussian Mixture Model (GMM), trained through Electromyography (EMG) signals to estimate the bending angle of a single human joint. The GMM is created from the EMG signals collected by different people and the goal is to create a general model based on the data of different subjects. The model is then tested on new, unseen data. The goodness of the estimated data is evaluated by means of Normalized Mean Square ErrorFile in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
stivalfrancesca1063989.pdf
accesso aperto
Dimensione
4.69 MB
Formato
Adobe PDF
|
4.69 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/20.500.12608/19862