In this work, a novel type of human identification system is proposed, which has the aim to recognize a user from his biometric traits of his way of walk. A smartphone is utilized to acquire motion data from the built-in sensors. Data from accelerometer and gyroscope are processed through a cycle extraction phase, a Convolutional Neural Network for feature extraction and a One-Class SVM classifier for identification. From quantitave results the system achieves an Equal Error Rate close to 1%
One-Class Subject Identification From Smartphone-Acquired Walking Data
Merelli, Luca
2016/2017
Abstract
In this work, a novel type of human identification system is proposed, which has the aim to recognize a user from his biometric traits of his way of walk. A smartphone is utilized to acquire motion data from the built-in sensors. Data from accelerometer and gyroscope are processed through a cycle extraction phase, a Convolutional Neural Network for feature extraction and a One-Class SVM classifier for identification. From quantitave results the system achieves an Equal Error Rate close to 1%File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
merelli_luca_tesi.pdf
accesso aperto
Dimensione
1.86 MB
Formato
Adobe PDF
|
1.86 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/20.500.12608/20481