The growing use of technology and cyber tools has been embraced by the healthcare sector in many ways. An interesting and currently not completely exploited field of application is "patient engagement" . This thesis tackles the problem of classifying diabetes patients, with the use of machine learning, based on the therapy they are following in: patients that are following the correct therapy and patients that are not following the therapy, or for which the therapy is not correct.

Machine learning techniques for classification problems related to therapies in diabetes patients

Barutta, Elena
2020/2021

Abstract

The growing use of technology and cyber tools has been embraced by the healthcare sector in many ways. An interesting and currently not completely exploited field of application is "patient engagement" . This thesis tackles the problem of classifying diabetes patients, with the use of machine learning, based on the therapy they are following in: patients that are following the correct therapy and patients that are not following the therapy, or for which the therapy is not correct.
2020-01-07
machine learning, electronic health, eHealth, diabetes
File in questo prodotto:
File Dimensione Formato  
Thesis_1177734_EB.pdf

accesso aperto

Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/22895