This work focuses on semantic segmentation over indoor 3D data, that is, to assign labels to every point in the point clouds representing working spaces: after researching the current state of the art, traditional approaches like random forests and deep neural networks based on PointNet are evaluated. The Superpoint Graph architecture and the 3D Entangled Forests algorithm are selected for mixing their features to try to enhance their performance.
Mixing Deep Networks and Entangled Forests for the Semantic Segmentation of 3D Indoor Scenes
Rigotto, Filippo
2019/2020
Abstract
This work focuses on semantic segmentation over indoor 3D data, that is, to assign labels to every point in the point clouds representing working spaces: after researching the current state of the art, traditional approaches like random forests and deep neural networks based on PointNet are evaluated. The Superpoint Graph architecture and the 3D Entangled Forests algorithm are selected for mixing their features to try to enhance their performance.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
filippo_rigotto_tesi.pdf
accesso aperto
Dimensione
1.83 MB
Formato
Adobe PDF
|
1.83 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/20.500.12608/24615