In this thesis an industrial issue is analysed. The issue consist on the undesirable effect of actuator sturation. Two approaches are given to solve the issue: an accurate inertia identification algorithm based on the DFT coefficient; and advanced anti-windup compensators. The principle of the modern anti-windup (DLAW and MRAW, LMI-based design approach), and a systematic design design procedure for the observer-based anti-windup are given. Simulation and test results are also given.
Advanced Anti-Windup Techniques for the Limitation of the Effects of the Actuator Saturation
Ronzani, Daniele
2018/2019
Abstract
In this thesis an industrial issue is analysed. The issue consist on the undesirable effect of actuator sturation. Two approaches are given to solve the issue: an accurate inertia identification algorithm based on the DFT coefficient; and advanced anti-windup compensators. The principle of the modern anti-windup (DLAW and MRAW, LMI-based design approach), and a systematic design design procedure for the observer-based anti-windup are given. Simulation and test results are also given.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Ronzani_Daniele_1132455.pdf
accesso aperto
Dimensione
15.64 MB
Formato
Adobe PDF
|
15.64 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/20.500.12608/26982