Self-assembling short peptides are attractive candidates for biomaterials based on supramolecular hydrogels because they are biocompatible, biodegradable, easy to synthesize and capable of performing biological functions. They lend themselves to being, for example, excellent candidates for the creation of scaffolds for tissue engineering. Peptide-based hydrogels, however, do not have mechanical properties suitable for cellular support as they are usually too weak and cannot withstand mechanical stress. It is therefore possible to improve their mechanical properties by combining them with carbon nanostructures. The inclusion of the nanostructures not only improves the mechanical performance but also gives the hydrogels new properties, such as electrical conductivity or self-healing capacity, which favors for example the growth of cardiac and/or neuronal cells. In this thesis project, three different peptides were successfully synthesized, two pentapeptides: Ac-EFEFE-NH2 (1) and WKWEW (2), and one decapeptide: Ac-IKVAVWKWEW (3). The three systems were purified, where necessary, to make them suitable for the type of application for which they were designed. Once the purification had been carried out, it was possible to study the systems by NMR, IR and circular dichroism analysis. The next step was to test their gelation capacity, verifying the minimum concentration required to obtain a gel and observing the conditions under which the gels were formed (pH, temperature, and salts). Once the gels were obtained, we moved on to the study of gelation in the presence of carbon nanostructures: after the creation of a homogeneous dispersion of nanotubes, compact gels were made; finally, the two types of gels were tested and compared by means of rheology studies to verify whether the reinforcement was effective.

I peptidi corti auto-assemblanti sono dei candidati attraenti per la realizzazione di biomateriali a base di idrogel supramolecolari poiché biocompatibili, biodegradabili, facili da sintetizzare e capaci di svolgere funzioni biologiche. Si prestano ad essere, ad esempio, ottimi candidati per la creazione di scaffolds per l’ingegneria tissutale. Gli idrogel a base peptidica, tuttavia, non sono caratterizzati da proprietà meccaniche adatte al supporto cellulare in quanto sono solitamente troppo deboli e non riescono a sopportare lo sforzo meccanico. In questo senso, è possibile migliorare le loro proprietà meccaniche combinandoli con nanostrutture di carbonio. L’inclusione delle nanostrutture non solo migliora le prestazioni a livello meccanico ma conferisce anche nuove proprietà agli idrogel, come la conduttività elettrica o la capacità di self-healing, e ciò favorisce ad esempio la crescita di cellule cardiache e/o neuronali. In questo progetto di tesi sono stati sintetizzati con successo tre differenti peptidi, due pentapeptidi : Ac-EFEFE-NH2 (1) e WKWEW (2), ed un decapeptide: Ac-IKVAVWKWEW (3). I tre sistemi sono stati purificati, laddove necessario, al fine di renderli adatti al tipo di applicazione per cui sono stati progettati. Una volta eseguita la purificazione è stato possibile studiare i sistemi tramite analisi NMR, IR e dicroismo circolare. Lo step seguente è stato quello di testare la loro capacità di gelazione, verificando quale fosse la minima concentrazione necessaria ad ottenere un gel compatto e osservando in quali condizioni tali gel si costituissero (pH, temperatura e sali). Una volta ottenuti i gel si è passati allo studio della gelazione in presenza delle nanostrutture di carbonio: dopo la creazione di una dispersione omogenea di nanotubi sono stati realizzati gel compatti; infine, sono stati testati e confrontati i gel con e senza nanotubi tramite studi di reologia in modo da verificare se il rinforzo fosse efficace.

Idrogeli supramolecolari a base di peptidi auto-assemblanti ricchi in triptofano e i suoi compositi con nanotubi di carbonio per applicazioni biomediche.

BRUSEGAN, AURORA
2021/2022

Abstract

Self-assembling short peptides are attractive candidates for biomaterials based on supramolecular hydrogels because they are biocompatible, biodegradable, easy to synthesize and capable of performing biological functions. They lend themselves to being, for example, excellent candidates for the creation of scaffolds for tissue engineering. Peptide-based hydrogels, however, do not have mechanical properties suitable for cellular support as they are usually too weak and cannot withstand mechanical stress. It is therefore possible to improve their mechanical properties by combining them with carbon nanostructures. The inclusion of the nanostructures not only improves the mechanical performance but also gives the hydrogels new properties, such as electrical conductivity or self-healing capacity, which favors for example the growth of cardiac and/or neuronal cells. In this thesis project, three different peptides were successfully synthesized, two pentapeptides: Ac-EFEFE-NH2 (1) and WKWEW (2), and one decapeptide: Ac-IKVAVWKWEW (3). The three systems were purified, where necessary, to make them suitable for the type of application for which they were designed. Once the purification had been carried out, it was possible to study the systems by NMR, IR and circular dichroism analysis. The next step was to test their gelation capacity, verifying the minimum concentration required to obtain a gel and observing the conditions under which the gels were formed (pH, temperature, and salts). Once the gels were obtained, we moved on to the study of gelation in the presence of carbon nanostructures: after the creation of a homogeneous dispersion of nanotubes, compact gels were made; finally, the two types of gels were tested and compared by means of rheology studies to verify whether the reinforcement was effective.
2021
Tryptophan-rich self-assembling peptide based supramolecular hydrogels and their composites with carbon nanotubes for biomedical applications.
I peptidi corti auto-assemblanti sono dei candidati attraenti per la realizzazione di biomateriali a base di idrogel supramolecolari poiché biocompatibili, biodegradabili, facili da sintetizzare e capaci di svolgere funzioni biologiche. Si prestano ad essere, ad esempio, ottimi candidati per la creazione di scaffolds per l’ingegneria tissutale. Gli idrogel a base peptidica, tuttavia, non sono caratterizzati da proprietà meccaniche adatte al supporto cellulare in quanto sono solitamente troppo deboli e non riescono a sopportare lo sforzo meccanico. In questo senso, è possibile migliorare le loro proprietà meccaniche combinandoli con nanostrutture di carbonio. L’inclusione delle nanostrutture non solo migliora le prestazioni a livello meccanico ma conferisce anche nuove proprietà agli idrogel, come la conduttività elettrica o la capacità di self-healing, e ciò favorisce ad esempio la crescita di cellule cardiache e/o neuronali. In questo progetto di tesi sono stati sintetizzati con successo tre differenti peptidi, due pentapeptidi : Ac-EFEFE-NH2 (1) e WKWEW (2), ed un decapeptide: Ac-IKVAVWKWEW (3). I tre sistemi sono stati purificati, laddove necessario, al fine di renderli adatti al tipo di applicazione per cui sono stati progettati. Una volta eseguita la purificazione è stato possibile studiare i sistemi tramite analisi NMR, IR e dicroismo circolare. Lo step seguente è stato quello di testare la loro capacità di gelazione, verificando quale fosse la minima concentrazione necessaria ad ottenere un gel compatto e osservando in quali condizioni tali gel si costituissero (pH, temperatura e sali). Una volta ottenuti i gel si è passati allo studio della gelazione in presenza delle nanostrutture di carbonio: dopo la creazione di una dispersione omogenea di nanotubi sono stati realizzati gel compatti; infine, sono stati testati e confrontati i gel con e senza nanotubi tramite studi di reologia in modo da verificare se il rinforzo fosse efficace.
Idrogeli
Peptidi
Triptofano
Nanotubi di carbonio
Biomediche
File in questo prodotto:
File Dimensione Formato  
Brusegan_Aurora.pdf

accesso aperto

Dimensione 5.35 MB
Formato Adobe PDF
5.35 MB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/29221