Organic electronics is becoming particularly attractive for biosensing applications, thanks to its advantages such as low-cost materials and fabrication processes, biocompatibility and high sensitivity. Electrolyte-Gated Organic Field Effect Transistors (EGOFETs) have been widely investigated in recent years in this field, due to their peculiar ability to operate at very low voltages, thanks to the high double-layer capacitance given by the interfaces with the electrolyte. However, the contact with oxygen and humidity in acqueous environment is detrimental for the functionality of the transistor, changing its electrical characteristics (threshold voltage shift) and degradating it. This dissertation is focused on the stabilization of the operating point of the EGOFET, by means of the development of a digital control that exploits an additional gate to control the threshold voltage of the liquid-gated conduction channel. We built up a complete control system that allows to achieve a well-defined output signal for long term measurements. In particular, we targeted extracellular recording and stimulation, by testing different methods to detect and preserve hypothetical action potential signals. All the configurations have been tested by simulations and experimental evidences. The digital control includes autotuning tools to give robustness to the degradation of the devices properties. Several parameters of the control system can be tuned depending on the priorities we want to take into account. With regard to a future implementation with real cells, different coatings for cell seeding have been tried, in order to analyze their effect on the electrical properties. The coated devices stored in air showed a field-effect behaviour for approximately one month. This thesis is part of a broader project called Project Proactive 2018 "Fully printed organic array of bidirectional reference-less sensors for neuronal interfacing", led by the Principal Investigator Prof. Andrea Cester, in collaboration with: • VIMM Veneto Institute of Molecular Medicine • DiSC Dipartimento di Scienze Chimiche, UNIPD • ICMAB Institut de Ciència de Materials de Barcelona
L’elettronica organica sta diventando particolarmente attraente per le applicazioni di biosensing, grazie ai suoi vantaggi come il basso costo dei materiali e dei processi di fabbricazione, la biocompatibilità e l’alta sensibilità. I transistor organici ad effetto di campo con gate elettrolitico (EGOFETs) sono stati ampiamente studiati negli ultimi anni in questo campo, per la loro peculiare abilità di operare a tensioni molto basse, grazie all’elevata apacità di double-layer che si ottiene all’interfaccia con l’elettrolita. Tuttavia, il contatto con l’ossigeno e l’umidità in soluzioni acquose è dannoso per le funzionalità del transistor, modificandone le caratteristiche elettriche (variazione della tensione di soglia) e degradandolo. Questa tesi si concentra sulla stabilizzazione del punto operativo dell’EGOFET, attraverso lo sviluppo di un controllo digitale che sfrutta un gate aggiuntivo per controllare la tensione di soglia del canale di conduzione liquid-gated. Abbiamo costruito un sistema di controllo completo che permette di ottenere un segnale di uscita ben definito per misure a lungo termine. In particolare, abbiamo mirato alla registrazione e alla stimolazione di segnali extracellulari, testando diversi metodi per rilevare e preservare ipotetici segnali di potenziale d’azione. Tutte le configurazioni sono state testate da simulazioni e prove sperimentali. Il controllo digitale include strumenti di autotuning per fornire robustezza rispetto al degrado delle proprietà dei dispositivi. Diversi parametri del sistema di controllo possono essere tarati a seconda delle priorità che vogliamo prendere in considerazione. Per quanto riguarda una futura implementazione con cellule reali, sono stati provati diversi rivestimenti per la semina delle cellule, al fine di analizzare il loro effetto sulle proprietà elettriche. I dispositivi rivestiti conservati in aria hanno mostrato un comportamento a effetto campo per circa un mese. Questa tesi fa parte di un progetto più ampio chiamato Project Proactive 2018 "Fully printed organic array of bidirectional reference-less sensors for neuronal interfacing", led by the Principal Investigator Prof. Andrea Cester, in collaborazione con: • VIMM Veneto Institute of Molecular Medicine • DiSC Dipartimento di Scienze Chimiche, UNIPD • ICMAB Institut de Ciència de Materials de Barcelona
Study and implementation of a digital control of dual-gated electrolyte-gated organic field-effect transistors for cell stimulation and recording
POLLESEL, ANDREA
2021/2022
Abstract
Organic electronics is becoming particularly attractive for biosensing applications, thanks to its advantages such as low-cost materials and fabrication processes, biocompatibility and high sensitivity. Electrolyte-Gated Organic Field Effect Transistors (EGOFETs) have been widely investigated in recent years in this field, due to their peculiar ability to operate at very low voltages, thanks to the high double-layer capacitance given by the interfaces with the electrolyte. However, the contact with oxygen and humidity in acqueous environment is detrimental for the functionality of the transistor, changing its electrical characteristics (threshold voltage shift) and degradating it. This dissertation is focused on the stabilization of the operating point of the EGOFET, by means of the development of a digital control that exploits an additional gate to control the threshold voltage of the liquid-gated conduction channel. We built up a complete control system that allows to achieve a well-defined output signal for long term measurements. In particular, we targeted extracellular recording and stimulation, by testing different methods to detect and preserve hypothetical action potential signals. All the configurations have been tested by simulations and experimental evidences. The digital control includes autotuning tools to give robustness to the degradation of the devices properties. Several parameters of the control system can be tuned depending on the priorities we want to take into account. With regard to a future implementation with real cells, different coatings for cell seeding have been tried, in order to analyze their effect on the electrical properties. The coated devices stored in air showed a field-effect behaviour for approximately one month. This thesis is part of a broader project called Project Proactive 2018 "Fully printed organic array of bidirectional reference-less sensors for neuronal interfacing", led by the Principal Investigator Prof. Andrea Cester, in collaboration with: • VIMM Veneto Institute of Molecular Medicine • DiSC Dipartimento di Scienze Chimiche, UNIPD • ICMAB Institut de Ciència de Materials de BarcelonaFile | Dimensione | Formato | |
---|---|---|---|
Pollesel_Andrea.pdf
Open Access dal 15/04/2023
Dimensione
39.62 MB
Formato
Adobe PDF
|
39.62 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/29245