Cavitation is a fluid-dynamic phenomenon that affects the flow of a liquid subjected to pressure variations. When the pressure of the fluid falls below the saturation pressure there is a phase transition from liquid to vapor. The collapse of these vapor bubbles causes surface damage, noise, loss of efficiency and vibration that are detrimental to the machinery. Action needs to be taken right from the design stage of the turbomachine to reduce the occurrence of cavitation. Nowadays it is possible to simulate the process numerically in order to define the design characteristics required to reduce the cavitation problem. The numerical simulation of a multiphase flow composed of liquid and vapor, such as that produced by cavitation, is very delicate to process on the computer because the results are greatly influenced by the parameters chosen. An analysis of the studies in the scientific literature show that fluid-dynamic models of cavitation and turbulence play a fundamental role in correctly simulating the physics of the cavitating flow. Based on the results produced by previous studies, this master’s thesis aims to simulate a water flow inside an axisymmetric convergent-divergent nozzle to study the periodic phenomenon of partial cavitation driven by the re-entrant jet mechanism. Specifically, we want to evaluate the influence of the mesh by testing a denser grid structure than in previous studies to observe whether the phenomenon of the re-entrant jet occurs correctly, with the same frequency found experimentally. In CFD simulations, the parameters chosen for the boundary conditions at the inlet pipe influence the development of the cavitation phenomenon. It is chosen to carry out two simulations with the same mesh by setting two different boundary conditions in the inlet section: in the first case is used the Synthetic Eddy Method (SEM), which reproduces a realistically turbulent flow field, and in the second case the boundary conditions are set constant over the whole section. Simulations are carried out with STAR CCM+ software, the Schnerr-Sauer model is chosen to simulate cavitation and the LES (Large Eddy Simulation) model is used to reproduce the turbulence, implementing the WALE (Wall Adapting Local Eddy Viscosity) Sub-Grid Scale model for the problem closure. It is assumed that the liquid and vapor phases are both incompressible, the Segregated Flow Solver with the SIMPLE algorithm is used to solve the Navier-Stokes equations and the Volume of Fluid (VOF) method is implemented for multiphase flow simulation. In order to analyze the results and compare them with the experimental data present in the literature, the trend of the vapor fraction at the four cardinal points of the nozzle throat section is studied. The Fast Fourier Transform (FFT) and the Wavelet Transform (CWT) of each signal are calculated to identify how often the periodic detachment of vapor clouds occurs. To study the structure and turbulent motion of the vapor clouds within the nozzle the pressure, velocity, and vapor fraction fields are plotted. It is observed that the mesh structure influences the frequency at which the vapor clouds periodically detach. By refining the computational grid, the shedding frequency approaches the experimental one, for both simulations. Despite an improvement in the prediction of the fluid-dynamic phenomenon, the simulated frequency does not correspond to the experimental one. In order to correctly simulate the phenomenon, it is therefore necessary to further refine the mesh until the simulated frequency does not correspond to that measured experimentally.
La cavitazione è un fenomeno fluidodinamico che interessa il flusso di un liquido sottoposto a variazioni di pressione; quando la pressione del fluido scende sotto la pressione di saturazione si ha il passaggio di stato da liquido a gassoso. Il collasso di queste bolle di vapore provoca danni alle superfici, rumore, perdite di rendimento e vibrazioni deleterie per il macchinario. È necessario quindi agire fin dalle fasi di progettazione della turbomacchina per ridurre l’insorgenza del fenomeno della cavitazione. Al giorno d’oggi si può simulare il processo numericamente in modo da definire le caratteristiche di progetto necessarie per ridurre il problema della cavitazione. La simulazione numerica di un flusso multifase composto da liquido e vapore, come quello prodotto dalla cavitazione, risulta molto delicata da elaborare al computer perché i risultati sono notevolmente influenzati dai parametri scelti. Analizzando gli studi presenti in letteratura scientifica si osserva che i modelli fluidodinamici di cavitazione e turbolenza giocano un ruolo fondamentale nel simulare correttamente la fisica del flusso cavitante. Sulla base dei risultati prodotti dagli studi precedenti, in questa tesi magistrale si vuole simulare un flusso d’acqua all’interno di un condotto assial-simmetrico convergente-divergente per studiare il fenomeno periodico della cavitazione parziale guidata dal meccanismo del re-entrant jet. Nello specifico si vuole valutare l’influenza dalla mesh testando una struttura di griglia più fitta rispetto agli studi precedenti per osservare se il fenomeno del re-entrant jet si manifesta correttamente, con la stessa frequenza riscontrata sperimentalmente. Nelle simulazioni CFD i parametri scelti per le condizioni al contorno in ingresso al condotto influiscono sullo sviluppo del fenomeno della cavitazione. Si sceglie di effettuare due simulazioni con la stessa mesh impostando due diverse condizioni al contorno nella sezione di ingresso: nel primo caso si utilizza il Synthetic Eddy Method (SEM), che riproduce un campo di moto realisticamente turbolento, e nel secondo caso invece si impostano le condizioni al contorno costanti su tutta la sezione. Le simulazioni vengono effettuate con il software STAR CCM+, si sceglie il modello Schnerr-Sauer per simulare la cavitazione e per riprodurre la turbolenza si utilizza il modello LES (Large Eddy Simulation) implementando il WALE (Wall Adapting Local Eddy Viscosity) Sub-Grid Scale model per la chiusura del problema. Si ipotizza che le fasi liquido e vapore siano entrambe incomprimibili, si utilizza il Segregated Flow Solver con l’algoritmo SIMPLE per risolvere le equazioni di Navier-Stokes e si implementa il metodo Volume of Fluid (VOF) per la simulazione del flusso multifase. Per analizzare i risultati e confrontarli con i dati sperimentali presenti in letteratura si studia l’andamento della frazione di vapore nei quattro punti cardinali della sezione di gola dell’ugello. Si calcola la Fast Fourier Transform (FFT) e la Wavelet Transform (CWT) di ogni segnale per individuare con quale frequenza avviene il distacco periodico delle nuvole di vapore. Per studiare la struttura e il movimento turbolento delle nuvole di vapore all’interno dell’ugello si diagramma il campo di pressione, velocità e frazione di vapore. Si osserva che la struttura della mesh influenza la frequenza di distacco periodico delle nuvole di vapore. Raffinando la griglia di calcolo la frequenza di distacco si avvicina a quella sperimentale, per entrambe le simulazioni. Nonostante un miglioramento nella predizione del fenomeno fluidodinamico, la frequenza simulata non corrisponde con quella sperimentale. Per simulare correttamente il fenomeno è quindi necessario raffinare ulteriormente la mesh fino a che la frequenza simulata non corrisponde con quella misurata sperimentalmente.
CFD simulations of unsteady cavitation in convergent-divergent nozzle with LES turbulence model
ZARA, DAVIDE
2021/2022
Abstract
Cavitation is a fluid-dynamic phenomenon that affects the flow of a liquid subjected to pressure variations. When the pressure of the fluid falls below the saturation pressure there is a phase transition from liquid to vapor. The collapse of these vapor bubbles causes surface damage, noise, loss of efficiency and vibration that are detrimental to the machinery. Action needs to be taken right from the design stage of the turbomachine to reduce the occurrence of cavitation. Nowadays it is possible to simulate the process numerically in order to define the design characteristics required to reduce the cavitation problem. The numerical simulation of a multiphase flow composed of liquid and vapor, such as that produced by cavitation, is very delicate to process on the computer because the results are greatly influenced by the parameters chosen. An analysis of the studies in the scientific literature show that fluid-dynamic models of cavitation and turbulence play a fundamental role in correctly simulating the physics of the cavitating flow. Based on the results produced by previous studies, this master’s thesis aims to simulate a water flow inside an axisymmetric convergent-divergent nozzle to study the periodic phenomenon of partial cavitation driven by the re-entrant jet mechanism. Specifically, we want to evaluate the influence of the mesh by testing a denser grid structure than in previous studies to observe whether the phenomenon of the re-entrant jet occurs correctly, with the same frequency found experimentally. In CFD simulations, the parameters chosen for the boundary conditions at the inlet pipe influence the development of the cavitation phenomenon. It is chosen to carry out two simulations with the same mesh by setting two different boundary conditions in the inlet section: in the first case is used the Synthetic Eddy Method (SEM), which reproduces a realistically turbulent flow field, and in the second case the boundary conditions are set constant over the whole section. Simulations are carried out with STAR CCM+ software, the Schnerr-Sauer model is chosen to simulate cavitation and the LES (Large Eddy Simulation) model is used to reproduce the turbulence, implementing the WALE (Wall Adapting Local Eddy Viscosity) Sub-Grid Scale model for the problem closure. It is assumed that the liquid and vapor phases are both incompressible, the Segregated Flow Solver with the SIMPLE algorithm is used to solve the Navier-Stokes equations and the Volume of Fluid (VOF) method is implemented for multiphase flow simulation. In order to analyze the results and compare them with the experimental data present in the literature, the trend of the vapor fraction at the four cardinal points of the nozzle throat section is studied. The Fast Fourier Transform (FFT) and the Wavelet Transform (CWT) of each signal are calculated to identify how often the periodic detachment of vapor clouds occurs. To study the structure and turbulent motion of the vapor clouds within the nozzle the pressure, velocity, and vapor fraction fields are plotted. It is observed that the mesh structure influences the frequency at which the vapor clouds periodically detach. By refining the computational grid, the shedding frequency approaches the experimental one, for both simulations. Despite an improvement in the prediction of the fluid-dynamic phenomenon, the simulated frequency does not correspond to the experimental one. In order to correctly simulate the phenomenon, it is therefore necessary to further refine the mesh until the simulated frequency does not correspond to that measured experimentally.File | Dimensione | Formato | |
---|---|---|---|
Zara_Davide.pdf
accesso riservato
Dimensione
9.77 MB
Formato
Adobe PDF
|
9.77 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/29651