The aim of this thesis is to increase the efficiency of a stand-alone integrated Buck converter in light load conditions. The starting point is a reference Synchronous Buck converter made with integrated PN output stage, drivers and regulation loop. The reference Buck converter already shows an optimized efficiency at light load, thanks to a reduced quiescent current, and the implementation of PFM modulation (Pulse Frequency Modulation = constant on time) in light load regime. With this type of modulation the loop imposes a constant on time (Ton) and modulates the switching period. At light loads the buck converter works at lower frequencies using this type of modulation instead of the classic PWM (Pulse Width Modulation = constant switching frequency), so all the losses related to the frequency are reduced. At extremely light loads the Buck converter implements a deep PFM operating mode, in which a large part of the circuit is turned off after 1,4us off time, and stay off until the next switching cycle. This feature obviously saves a big part of the power consumption at light load increasing conversion efficiency. In this work the light load eff of the ref buck will be improved implementing the following two techniques: 1) The first idea is a trick that improves the efficiency in PFM regime. The idea is to change the value of the constant on time Ton in function of the input voltage Vin, using larger Ton at low input voltage Vin. In this way the converter operates in PFM in a great part of the working points in which the converter works in DCM and a larger Ton is used. In this way the converter works at lower frequency, reducing the losses in light load conditions due to reduced driving and switching losses, and to a reduced quiescent current thanks to operation in deep PFM mode for longer time. An efficiency boost at light loads (1mA to 10mA range) up to 27% using this idea with respect to the efficiency of the reference Buck is achieved. 2) The second idea consists on charging only partially the high side gate capacitance when the high side switch is in on state, saving part of the high side driver losses. We will see that at light loads the high side driving losses constitutes the largest part of the total power losses because of the presence of a high voltage path used for turning on the high side switch quickly. This technique allows an efficiency increase of approximately 4% at a load of 10mA, with respect to the reference buck converter.

Lo scopo della tesi è ridurre i consumi a bassi carichi di un buck converter integrato stand alone. Si è partiti da un DC-DC di riferimento composto da un buck converter, due driver per i power switch e un loop di regolazione che comprende due possibili modulazioni dei segnali che pilotano gli switch. Il DC-DC di riferimento presenta già di per se un basso consumo a bassi carichi in quanto in tali condizioni utilizza la modulazione PFM (Pulse Frequency Modulation = on time costante), che consiste nel mantenere fisso l’on time modulando il periodo di switching del buck. Questo tipo di modulazione permette al DC-DC di lavorare a frequenze minori, diminuendo così tutti i consumi legati alla frequenza di switching (predominanti a bassi carichi). Il circuito di riferimento presenta anche la modalità deep PFM che consiste nello spegnimento di una gran parte di esso dopo 1,4us di off time, con riaccensione solamente all’inizio di un nuovo on time. Questa modalità si attiva solo quando il DC-DC lavora in PFM e raggiunge frequenze molto basse, ovvero a carichi molto bassi, ma permette di risparmiare moltissima potenza dissipata. In questa tesi verranno comparate le efficienze ottenute dal DC-DC di riferimento con quelle che si ottengono tramite l’utilizzo di nuove idee di design. La prima idea innovativa considerata si basa sul funzionamento in PFM del circuito e consiste nel modulare la durata dell’on tme costante in funzione della tensione d’ingresso, rendendolo maggiore al decrescere di Vin. Si fissa il Ton costante uguale a quello del DCDC di riferimento ad alte tensioni d’ingresso e si incrementa questo valore allo scendere della tensione d’ingresso. In questo modo l’on time fisso utilizzato in PFM risulterà maggiore (con quindi una decrescita della frequenza di switching) e il DC-DC otterrà più punti di lavoro per il quale viene utilizzata la modulazione PFM quando esso lavora in DCM (ovvero a bassi carichi). Tutto ciò ha l’effetto di diminuire la frequenza di switching aumentando l’efficienza. Si ottiene un incremento dell’efficienza fino a un +27% a bassi carichi grazie all’utilizzo di tale idea. La seconda idea che prendiamo in considerazione è quella di caricare solo parzialmente il gate dell’HS switch quando viene acceso a bassi carichi. Questo perchè si è notato un consumo elevato di potenza da parte dell’HS driver a bassi carichi dovuto al percorso ad alto voltaggo che scarica il gate del HS switch verso massa (percorso necessario soprattutto per permettere un accensione veloce di tale switch). Grazie all’utilizzo di questa idea di design otteniamo un incremento dell’efficienza di circa il 4% a 10mA di carico.

Buck DCDC converter efficiency optimization at light-load current regimes

CICOGNANI, ANDREA
2021/2022

Abstract

The aim of this thesis is to increase the efficiency of a stand-alone integrated Buck converter in light load conditions. The starting point is a reference Synchronous Buck converter made with integrated PN output stage, drivers and regulation loop. The reference Buck converter already shows an optimized efficiency at light load, thanks to a reduced quiescent current, and the implementation of PFM modulation (Pulse Frequency Modulation = constant on time) in light load regime. With this type of modulation the loop imposes a constant on time (Ton) and modulates the switching period. At light loads the buck converter works at lower frequencies using this type of modulation instead of the classic PWM (Pulse Width Modulation = constant switching frequency), so all the losses related to the frequency are reduced. At extremely light loads the Buck converter implements a deep PFM operating mode, in which a large part of the circuit is turned off after 1,4us off time, and stay off until the next switching cycle. This feature obviously saves a big part of the power consumption at light load increasing conversion efficiency. In this work the light load eff of the ref buck will be improved implementing the following two techniques: 1) The first idea is a trick that improves the efficiency in PFM regime. The idea is to change the value of the constant on time Ton in function of the input voltage Vin, using larger Ton at low input voltage Vin. In this way the converter operates in PFM in a great part of the working points in which the converter works in DCM and a larger Ton is used. In this way the converter works at lower frequency, reducing the losses in light load conditions due to reduced driving and switching losses, and to a reduced quiescent current thanks to operation in deep PFM mode for longer time. An efficiency boost at light loads (1mA to 10mA range) up to 27% using this idea with respect to the efficiency of the reference Buck is achieved. 2) The second idea consists on charging only partially the high side gate capacitance when the high side switch is in on state, saving part of the high side driver losses. We will see that at light loads the high side driving losses constitutes the largest part of the total power losses because of the presence of a high voltage path used for turning on the high side switch quickly. This technique allows an efficiency increase of approximately 4% at a load of 10mA, with respect to the reference buck converter.
2021
Buck DCDC converter efficiency optimization at light-load current regimes
Lo scopo della tesi è ridurre i consumi a bassi carichi di un buck converter integrato stand alone. Si è partiti da un DC-DC di riferimento composto da un buck converter, due driver per i power switch e un loop di regolazione che comprende due possibili modulazioni dei segnali che pilotano gli switch. Il DC-DC di riferimento presenta già di per se un basso consumo a bassi carichi in quanto in tali condizioni utilizza la modulazione PFM (Pulse Frequency Modulation = on time costante), che consiste nel mantenere fisso l’on time modulando il periodo di switching del buck. Questo tipo di modulazione permette al DC-DC di lavorare a frequenze minori, diminuendo così tutti i consumi legati alla frequenza di switching (predominanti a bassi carichi). Il circuito di riferimento presenta anche la modalità deep PFM che consiste nello spegnimento di una gran parte di esso dopo 1,4us di off time, con riaccensione solamente all’inizio di un nuovo on time. Questa modalità si attiva solo quando il DC-DC lavora in PFM e raggiunge frequenze molto basse, ovvero a carichi molto bassi, ma permette di risparmiare moltissima potenza dissipata. In questa tesi verranno comparate le efficienze ottenute dal DC-DC di riferimento con quelle che si ottengono tramite l’utilizzo di nuove idee di design. La prima idea innovativa considerata si basa sul funzionamento in PFM del circuito e consiste nel modulare la durata dell’on tme costante in funzione della tensione d’ingresso, rendendolo maggiore al decrescere di Vin. Si fissa il Ton costante uguale a quello del DCDC di riferimento ad alte tensioni d’ingresso e si incrementa questo valore allo scendere della tensione d’ingresso. In questo modo l’on time fisso utilizzato in PFM risulterà maggiore (con quindi una decrescita della frequenza di switching) e il DC-DC otterrà più punti di lavoro per il quale viene utilizzata la modulazione PFM quando esso lavora in DCM (ovvero a bassi carichi). Tutto ciò ha l’effetto di diminuire la frequenza di switching aumentando l’efficienza. Si ottiene un incremento dell’efficienza fino a un +27% a bassi carichi grazie all’utilizzo di tale idea. La seconda idea che prendiamo in considerazione è quella di caricare solo parzialmente il gate dell’HS switch quando viene acceso a bassi carichi. Questo perchè si è notato un consumo elevato di potenza da parte dell’HS driver a bassi carichi dovuto al percorso ad alto voltaggo che scarica il gate del HS switch verso massa (percorso necessario soprattutto per permettere un accensione veloce di tale switch). Grazie all’utilizzo di questa idea di design otteniamo un incremento dell’efficienza di circa il 4% a 10mA di carico.
DCDC
Buck
efficiency
light-load
design
File in questo prodotto:
File Dimensione Formato  
Cicognani_Andrea.pdf

accesso riservato

Dimensione 3.7 MB
Formato Adobe PDF
3.7 MB Adobe PDF

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/31552