The Capacitated Vehicle Routing Problem, CVRP for short, is a combinatorial optimization routing problem in which, a geographically dispersed set of customers with known demands must be served by a fleet of vehicles stationed at a central facility. Column generation techniques embedded within branch-price-and-cut frameworks have been the de facto state-of-the-art dominant approach for building exact algorithms for the CVRP over the last two decades. The pricer, a critical component in column generation, must solve the Pricing Problem (PP), which asks for an Elementary Shortest Path Problem with Resource Constraints (ESPPRC) in a reduced-cost network. Little scientific efforts have been dedicated to studying branch-and-cut based approaches for tackling the PP. The ESPPRC has been traditionally relaxed and solved through dynamic programming algorithms. This approach, however, has two major drawbacks. For starters, it worsens the obtained dual bounds. Furthermore, the running time degrades as the length of the generated routes increases. To evaluate the performance of their contributions, the operations research community has traditionally used a set of historical and artificial test instances. However, these benchmark instances do not capture the key characteristics of modern real-world distribution problems, which are usually characterized by longer routes. In this thesis, we develop a scheme based on a branch-and-cut approach for solving the pricing problem. We study the behavior and effectiveness of our implementation in producing longer routes by comparing it with state-of-the-art solutions based on dynamic programming. Our results suggest that branch-and-cut approaches may supplement the traditional labeling algorithm, indicating that further research in this area may bring benefits to CVRP solvers.

Il Capacitated Vehicle Routing Problem, abbreviato come CVRP, è un problema di ottimizzazione combinatoria d'instradamento nel quale, un insieme geograficamente sparso di clienti con richieste note deve essere servito da una flotta di veicoli stazionati in una struttura centrale. Negli ultimi due decenni, tecniche di Column generation incorporate all'interno di frameworks branch-price-and-cut sono state infatti l'approccio stato dell'arte dominante per la costruzione di algoritmi esatti per il CVRP. Il pricer, un componente critico nella column generation, deve risolvere il Pricing Problem (PP) che richiede la risoluzione di un Elementary Shortest Path Problem with Resource Constraints (ESPPRC) in una rete di costo ridotto. Pochi sforzi scientifici sono stati dedicati allo studio di approcci branch-and-cut per affrontare il PP. L'ESPPRC è stato tradizionalmente rilassato e risolto attraverso algoritmi di programmazione dinamica. Questo approccio, tuttavia, ha due principali svantaggi. Per cominciare, peggiora i dual bounds ottenuti. Inoltre, il tempo di esecuzione diminuisce all'aumentare della lunghezza dei percorsi generati. Per valutare la performance dei loro contributi, la comunità di ricerca operativa ha tradizionalmente utilizzato una serie d'istanze di test storiche e artificiali. Tuttavia, queste istanze di benchmark non catturano le caratteristiche chiave dei moderni problemi di distribuzione del mondo reale, che sono tipicamente caratterizzati da lunghi percorsi. In questa tesi sviluppiamo uno schema basato su un approccio branch-and-cut per risolvere il pricing problem. Studiamo il comportamento e l'efficacia della nostra implementazione nel produrre percorsi più lunghi comparandola con soluzioni all'avanguardia basate su programmazione dinamica. I nostri risultati suggeriscono che gli approcci branch-and-cut possono supplementare il tradizionale algoritmo di etichettatura, indicando che ulteriore ricerca in quest'area possa portare benefici ai risolutori CVRP.

A Branch-and-Cut based Pricer for the Capacitated Vehicle Routing Problem

PARO, DAVIDE
2021/2022

Abstract

The Capacitated Vehicle Routing Problem, CVRP for short, is a combinatorial optimization routing problem in which, a geographically dispersed set of customers with known demands must be served by a fleet of vehicles stationed at a central facility. Column generation techniques embedded within branch-price-and-cut frameworks have been the de facto state-of-the-art dominant approach for building exact algorithms for the CVRP over the last two decades. The pricer, a critical component in column generation, must solve the Pricing Problem (PP), which asks for an Elementary Shortest Path Problem with Resource Constraints (ESPPRC) in a reduced-cost network. Little scientific efforts have been dedicated to studying branch-and-cut based approaches for tackling the PP. The ESPPRC has been traditionally relaxed and solved through dynamic programming algorithms. This approach, however, has two major drawbacks. For starters, it worsens the obtained dual bounds. Furthermore, the running time degrades as the length of the generated routes increases. To evaluate the performance of their contributions, the operations research community has traditionally used a set of historical and artificial test instances. However, these benchmark instances do not capture the key characteristics of modern real-world distribution problems, which are usually characterized by longer routes. In this thesis, we develop a scheme based on a branch-and-cut approach for solving the pricing problem. We study the behavior and effectiveness of our implementation in producing longer routes by comparing it with state-of-the-art solutions based on dynamic programming. Our results suggest that branch-and-cut approaches may supplement the traditional labeling algorithm, indicating that further research in this area may bring benefits to CVRP solvers.
2021
A Branch-and-Cut based Pricer for the Capacitated Vehicle Routing Problem
Il Capacitated Vehicle Routing Problem, abbreviato come CVRP, è un problema di ottimizzazione combinatoria d'instradamento nel quale, un insieme geograficamente sparso di clienti con richieste note deve essere servito da una flotta di veicoli stazionati in una struttura centrale. Negli ultimi due decenni, tecniche di Column generation incorporate all'interno di frameworks branch-price-and-cut sono state infatti l'approccio stato dell'arte dominante per la costruzione di algoritmi esatti per il CVRP. Il pricer, un componente critico nella column generation, deve risolvere il Pricing Problem (PP) che richiede la risoluzione di un Elementary Shortest Path Problem with Resource Constraints (ESPPRC) in una rete di costo ridotto. Pochi sforzi scientifici sono stati dedicati allo studio di approcci branch-and-cut per affrontare il PP. L'ESPPRC è stato tradizionalmente rilassato e risolto attraverso algoritmi di programmazione dinamica. Questo approccio, tuttavia, ha due principali svantaggi. Per cominciare, peggiora i dual bounds ottenuti. Inoltre, il tempo di esecuzione diminuisce all'aumentare della lunghezza dei percorsi generati. Per valutare la performance dei loro contributi, la comunità di ricerca operativa ha tradizionalmente utilizzato una serie d'istanze di test storiche e artificiali. Tuttavia, queste istanze di benchmark non catturano le caratteristiche chiave dei moderni problemi di distribuzione del mondo reale, che sono tipicamente caratterizzati da lunghi percorsi. In questa tesi sviluppiamo uno schema basato su un approccio branch-and-cut per risolvere il pricing problem. Studiamo il comportamento e l'efficacia della nostra implementazione nel produrre percorsi più lunghi comparandola con soluzioni all'avanguardia basate su programmazione dinamica. I nostri risultati suggeriscono che gli approcci branch-and-cut possono supplementare il tradizionale algoritmo di etichettatura, indicando che ulteriore ricerca in quest'area possa portare benefici ai risolutori CVRP.
Vehicle routing
Integer programming
Column generation
ESPPRC
Branch-and-cut
File in questo prodotto:
File Dimensione Formato  
Paro_Davide.pdf

accesso aperto

Dimensione 2.53 MB
Formato Adobe PDF
2.53 MB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/31557