A Flywheel Energy Storage System (FESS) is a storage technology that, differently from conventional batteries, is based on mechanical inertia. In the presence of an excess of power, this is used for accelerating a rotating mass employing an electrical motor. Its kinetic energy can then be converted back into electrical energy by utilizing the electrical machine as a generator. The mass keeps rotating at constant speed when no energy is stored or released from the flywheel. Friction losses are minimized by containing the rotating mass in a vacuum chamber and by levitating it on magnetic bearings. In this way, an efficient storage capability is guaranteed. The low carbon footprint, the elimination of hazardous materials in batteries, and the possibility of achieving millions of full-depth discharge cycles, make this technology an attractive green alternative to conventional batteries. The applications range from electrical transportation, electrical grid storage/services and others. A laboratory prototype was previously built in DTU Mechanical Engineering, with the initial focus being on realizing the control system for the magnetic bearings such that the rotor was levitating stably inside a non-vacuum chamber. The rotor was being spun through of a small air turbine. The air turbine itself does not allow to extract the power that is stored in the rotating mass. Thus, the project aims to couple a motor-generator to the system, such that the power flow between an electrical source and the FESS itself is controlled, by controlling the speed of the electrical machine. This is possible using a Variable Frequency Drive (VFD), composed of an electrical power conversion system and the related control logic for achieving the expected result. The first step consists in updating the mechanical infrastructure such that the electrical motor is appropriately coupled properly with the existing system. With the test rig being updated, the control system needs to be updated as well for dealing with a system described by different dynamics. Finally, the VFD is introduced and set such that the speed of the rotor is controlled correctly and electrical power can flow in both directions.
Un volano è un sistema di accumulo che, a differenza delle batterie convenzionali, si basa sull'inerzia meccanica. In presenza di un eccesso di potenza, questa viene utilizzata per accelerare una massa rotante tramite un motore elettrico. L'energia cinetica può quindi essere riconvertita in energia elettrica utilizzando la macchina elettrica come generatore. La massa continua a ruotare a velocità costante fino a quando non viene immagazzinata o rilasciata energia dal volano. Le perdite per attrito sono ridotte al minimo contenendo la massa rotante in una camera sotto vuoto vuoto e facendola levitare tramite cuscinetti magnetici. In questo modo, viene garantita un'efficiente capacità di accumulo. Il ridotto impatto ecologico, l'eliminazione di materiali pericolosi nelle batterie e la possibilità di ottenere milioni di cicli di carica/scarica rendono questa tecnologia un'interessante alternativa ecologica alle batterie convenzionali. Le applicazioni spaziano dal trasporto elettrico, allo stoccaggio/servizi per la rete elettrica e altre ancora. Un prototipo è stato costruito in precedenza presso il DTU Mechanical Engineering, con l'obiettivo iniziale di realizzare il sistema di controllo dei cuscinetti magnetici in modo che il rotore leviti stabilmente all'interno di un guscio di contenimento non sotto vuoto. Il rotore poteva essere messo in rotazione attraverso una piccola turbina ad aria. Quest'ultima non consente di estrarre l'energia immagazzinata nella massa rotante. Pertanto, il progetto mira ad accoppiare un motore-generatore al sistema, in modo da controllare il flusso di energia tra una fonte di energia elettrica e il volano stesso, controllando la velocità della macchina elettrica. Ciò è possibile utilizzando un azionamento a frequenza variabile (VFD), composto da un sistema di conversione dell'energia elettrica e dalla relativa logica di controllo per ottenere il risultato atteso. Il primo passo consiste nell'aggiornare la struttura meccanica in modo che il motore elettrico sia opportunamente accoppiato al sistema esistente. Successivamente, anche il sistema di controllo deve essere aggiornato per gestire la diversa dinamica dell'albero. Infine, l'azionamento viene introdotto e impostato in modo che la velocità del rotore sia controllata correttamente e l'energia elettrica possa fluire in entrambe le direzioni.
DESIGN AND IMPLEMENTATION OF AN ELECTRICAL DRIVE TRAIN FOR A FLYWHEEL ENERGY STORAGE SYSTEM
DALLABONA, ALESSIO
2021/2022
Abstract
A Flywheel Energy Storage System (FESS) is a storage technology that, differently from conventional batteries, is based on mechanical inertia. In the presence of an excess of power, this is used for accelerating a rotating mass employing an electrical motor. Its kinetic energy can then be converted back into electrical energy by utilizing the electrical machine as a generator. The mass keeps rotating at constant speed when no energy is stored or released from the flywheel. Friction losses are minimized by containing the rotating mass in a vacuum chamber and by levitating it on magnetic bearings. In this way, an efficient storage capability is guaranteed. The low carbon footprint, the elimination of hazardous materials in batteries, and the possibility of achieving millions of full-depth discharge cycles, make this technology an attractive green alternative to conventional batteries. The applications range from electrical transportation, electrical grid storage/services and others. A laboratory prototype was previously built in DTU Mechanical Engineering, with the initial focus being on realizing the control system for the magnetic bearings such that the rotor was levitating stably inside a non-vacuum chamber. The rotor was being spun through of a small air turbine. The air turbine itself does not allow to extract the power that is stored in the rotating mass. Thus, the project aims to couple a motor-generator to the system, such that the power flow between an electrical source and the FESS itself is controlled, by controlling the speed of the electrical machine. This is possible using a Variable Frequency Drive (VFD), composed of an electrical power conversion system and the related control logic for achieving the expected result. The first step consists in updating the mechanical infrastructure such that the electrical motor is appropriately coupled properly with the existing system. With the test rig being updated, the control system needs to be updated as well for dealing with a system described by different dynamics. Finally, the VFD is introduced and set such that the speed of the rotor is controlled correctly and electrical power can flow in both directions.File | Dimensione | Formato | |
---|---|---|---|
Dallabona_Alessio.pdf
accesso riservato
Dimensione
41.84 MB
Formato
Adobe PDF
|
41.84 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/32001