The materials considered in this analysis are the PCMs (Phase Change Material). Their great advantage is the possibility to store thermal energy, thanks to their high latent heat, related to the phase change itself, in particular the passage from solid to liquid phase. In particular, the PCMs selected are different paraffin, having distinct melting temperatures. The advantages of using them are first of all economical since they are cheap materials, secondly, they are not harmful to the human health. Furthermore, other advantages are related to their availability at different melting temperatures, their very poor aggressiveness when in contact with other materials, and finally, their low volume variation during the phase change, which allows them to use, as in the case study, a reduced dimensions apparatus (convenient also from the economical point of view). The possibility to store energy saw applications in the renewable energy sources field, thinking about their discontinuity and the unpredictability. However, it is important to know how the applications are very and not limited just to this field. The main problem of PCMs is related to the low thermal conductivity, as it will be reported later during the analysis, around 2 W m-1 K-1. For this reason, the principle applied is to support the enhanced heat transfer with a metallic matrix, with specifics shown later, in order to improve the overall process (the geometry taken into account is the elementary cell 10 mm, porosity 93%, repeated to form the component). The used paraffin have a melting temperature of 42, 55, and 64 °C. The fairness of the experiments conducted in the laboratory was then controlled using the software Ansys, in particular the Fluent component, reproducing the original geometry (simplified in one cell). In addition, starting from the work of Diani and Campanale [1], an improved numerical model was developed, including all the geometries analyzed in past studies, in order to have an overall formulation being able to describe the complex behaviour of the systems. The first chapter presents the description of the PCMs (types, characteristics, and applications), including also the actions taken in order to improve the thermal conductivity. The second chapter shows the description of the system for the experiments, including the part related to the thermocouples used. The third chapter develops the results of the analysis, with different comparisons between different properties. The fourth chapter is related to the ANSYS (Fluent) simulations. The fifth and final chapters present the explanation of the starting numerical model, the improved one, and finally the updated results from the last one, and the conclusions on the PCMs.

I materiali presi in considerazione in questa analisi sono i PCMs (Phase Change Material). Il vantaggio principale è legato alla possibilità di immagazzinare energia termica, grazie al loro elevato calore latente, dovuto cambio di fase stesso, in particolare al passaggio dalla fase solida a quella liquida. I PCM selezionati sono diversi tipi di paraffina, con temperature di fusione distinte. Questi sono innanzitutto economici e non dannosi per la salute umana. Inoltre, altri vantaggi sono legati alla loro disponibilità a diverse temperature di fusione, alla loro bassissima aggressività a contatto con altri materiali ed infine alla loro ridotta variazione di volume durante il cambio di fase. In questo modo, come nel caso di questo studio, è possibile utilizzare un apparato di dimensioni ridotte (conveniente anche dal punto di vista economico). La possibilità di immagazzinare energia ha visto lo sviluppo di diverse applicazioni nel campo delle fonti energetiche rinnovabili, in particolare atte a sopperire alla loro discontinuità e all’imprevedibilità. Tuttavia, è importante come queste siano molte e non limitate solo a questo campo. Il problema principale dei PCM è legato alla bassa conducibilità termica, come verrà riportato più avanti durante l’analisi, intorno a 2 W m-1 K-1. Per questo motivo il principio applicato è quello di supportare lo scambio termico con una matrice metallica, con specifiche illustrate più avanti, al fine di migliorare il processo complessivo (la geometria considerata è la cella elementare 10 mm, porosità 93%, ripetuta per formare il componente). Le paraffine utilizzata ha una temperatura di fusione di 42, 55 e 64 °C. La bontà degli esperimenti condotti in laboratorio è stata poi controllata utilizzando il software Ansys (Fluent), riproducendo la geometria originale (semplificata ad una cella). In seguito, partendo dal lavoro di Diani e Campanale [1], è stato sviluppato un nuovo modello numerico, comprendente tutte le geometrie analizzate negli studi precedenti, al fine di avere una formulazione complessiva in grado di descrivere il comportamento complesso dei diversi sistemi. Il primo capitolo presenta la descrizione dei PCM (tipi, caratteristiche e applicazioni), comprese le tecniche per migliorare la conducibilità termica. Il secondo capitolo presenta la descrizione del sistema per gli esperimenti, compresa la parte relativa alle termocoppie utilizzate. Il terzo capitolo sviluppa i risultati dell’analisi, con diversi confronti tra le diverse proprietà. Il quarto capitolo riguarda le simulazioni ANSYS (Fluent). Il quinto ed ultimo capitolo presentano la spiegazione del modello numerico di partenza, lo sviluppo, e infine i risultati aggiornati dell’ultimo, e le conclusioni sui PCM.

Melting of paraffin: experimental tests and numerical analysis

MAMELI, ANDREA
2021/2022

Abstract

The materials considered in this analysis are the PCMs (Phase Change Material). Their great advantage is the possibility to store thermal energy, thanks to their high latent heat, related to the phase change itself, in particular the passage from solid to liquid phase. In particular, the PCMs selected are different paraffin, having distinct melting temperatures. The advantages of using them are first of all economical since they are cheap materials, secondly, they are not harmful to the human health. Furthermore, other advantages are related to their availability at different melting temperatures, their very poor aggressiveness when in contact with other materials, and finally, their low volume variation during the phase change, which allows them to use, as in the case study, a reduced dimensions apparatus (convenient also from the economical point of view). The possibility to store energy saw applications in the renewable energy sources field, thinking about their discontinuity and the unpredictability. However, it is important to know how the applications are very and not limited just to this field. The main problem of PCMs is related to the low thermal conductivity, as it will be reported later during the analysis, around 2 W m-1 K-1. For this reason, the principle applied is to support the enhanced heat transfer with a metallic matrix, with specifics shown later, in order to improve the overall process (the geometry taken into account is the elementary cell 10 mm, porosity 93%, repeated to form the component). The used paraffin have a melting temperature of 42, 55, and 64 °C. The fairness of the experiments conducted in the laboratory was then controlled using the software Ansys, in particular the Fluent component, reproducing the original geometry (simplified in one cell). In addition, starting from the work of Diani and Campanale [1], an improved numerical model was developed, including all the geometries analyzed in past studies, in order to have an overall formulation being able to describe the complex behaviour of the systems. The first chapter presents the description of the PCMs (types, characteristics, and applications), including also the actions taken in order to improve the thermal conductivity. The second chapter shows the description of the system for the experiments, including the part related to the thermocouples used. The third chapter develops the results of the analysis, with different comparisons between different properties. The fourth chapter is related to the ANSYS (Fluent) simulations. The fifth and final chapters present the explanation of the starting numerical model, the improved one, and finally the updated results from the last one, and the conclusions on the PCMs.
2021
Melting of paraffin: experimental tests and numerical analysis
I materiali presi in considerazione in questa analisi sono i PCMs (Phase Change Material). Il vantaggio principale è legato alla possibilità di immagazzinare energia termica, grazie al loro elevato calore latente, dovuto cambio di fase stesso, in particolare al passaggio dalla fase solida a quella liquida. I PCM selezionati sono diversi tipi di paraffina, con temperature di fusione distinte. Questi sono innanzitutto economici e non dannosi per la salute umana. Inoltre, altri vantaggi sono legati alla loro disponibilità a diverse temperature di fusione, alla loro bassissima aggressività a contatto con altri materiali ed infine alla loro ridotta variazione di volume durante il cambio di fase. In questo modo, come nel caso di questo studio, è possibile utilizzare un apparato di dimensioni ridotte (conveniente anche dal punto di vista economico). La possibilità di immagazzinare energia ha visto lo sviluppo di diverse applicazioni nel campo delle fonti energetiche rinnovabili, in particolare atte a sopperire alla loro discontinuità e all’imprevedibilità. Tuttavia, è importante come queste siano molte e non limitate solo a questo campo. Il problema principale dei PCM è legato alla bassa conducibilità termica, come verrà riportato più avanti durante l’analisi, intorno a 2 W m-1 K-1. Per questo motivo il principio applicato è quello di supportare lo scambio termico con una matrice metallica, con specifiche illustrate più avanti, al fine di migliorare il processo complessivo (la geometria considerata è la cella elementare 10 mm, porosità 93%, ripetuta per formare il componente). Le paraffine utilizzata ha una temperatura di fusione di 42, 55 e 64 °C. La bontà degli esperimenti condotti in laboratorio è stata poi controllata utilizzando il software Ansys (Fluent), riproducendo la geometria originale (semplificata ad una cella). In seguito, partendo dal lavoro di Diani e Campanale [1], è stato sviluppato un nuovo modello numerico, comprendente tutte le geometrie analizzate negli studi precedenti, al fine di avere una formulazione complessiva in grado di descrivere il comportamento complesso dei diversi sistemi. Il primo capitolo presenta la descrizione dei PCM (tipi, caratteristiche e applicazioni), comprese le tecniche per migliorare la conducibilità termica. Il secondo capitolo presenta la descrizione del sistema per gli esperimenti, compresa la parte relativa alle termocoppie utilizzate. Il terzo capitolo sviluppa i risultati dell’analisi, con diversi confronti tra le diverse proprietà. Il quarto capitolo riguarda le simulazioni ANSYS (Fluent). Il quinto ed ultimo capitolo presentano la spiegazione del modello numerico di partenza, lo sviluppo, e infine i risultati aggiornati dell’ultimo, e le conclusioni sui PCM.
PCM
paraffin
ANSYS (fluent)
thermal conductivity
melting
File in questo prodotto:
File Dimensione Formato  
Mameli_Andrea.pdf

accesso aperto

Descrizione: Melting of paraffin: experimental tests and numerical analysis
Dimensione 6.96 MB
Formato Adobe PDF
6.96 MB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/33250