The high energy demand to meet anthropogenic activities, together with the growing environmental and climate change problems, pushes more and more to the use of renewable energy. In the solar thermal sector, flat solar collectors are widely used for the production of domestic hot water; however, the effectiveness of the conversion from solar energy to thermal energy in these collectors is penalized due to the high heat dissipation from the collector surface towards the environment. The present experimental thesis investigates the functioning of a volumetric solar receiver operating with nanofluids as heat transfer fluids. The nanofluids, developed by the Department of Chemical Sciences of the University of Padua, are solutions of deionized water and carbon nanoparticles (Single-Wall-Carbon-NanoHorns SWCNHs) and have a high absorption capacity of solar radiation. An ad hoc experimental setup was created in order to conduct the experiments. During the tests, the thermal efficiency of the solar collector and the optical efficiency of the nanofluids were measured, the optical efficiency was evaluated by using two pyranometers to determine the solar irradiance absorbed by the nanofluids themselves. The stability of the nanofluids, evaluated by means of absorbance measurements made with a spectrophotometer, was analyzed over time as the flow rate and temperature of the nanofluids in the receiver varied.
L'elevata domanda energetica per sopperire alle attività antropiche, unitamente alle crescenti problematiche ambientali e di cambiamento climatico, spingono sempre più all’impiego di energia da fonti rinnovabili. Nel campo del solare termico, i collettori solari piani vengono ampiamente utilizzati per la produzione di acqua calda sanitaria; tuttavia, l’efficacia della conversione da energia solare ad energia termica in questi collettori risulta penalizzata a causa dalle elevate dissipazioni termiche dalla superficie del collettore verso l'ambiente. La presente tesi sperimentale indaga il funzionamento di un ricevitore solare volumetrico operante con nanofluidi come fluidi termovettori. I nanofluidi, sviluppati dal Dipartimento di Scienze Chimiche dell'Università di Padova, sono soluzioni di acqua deionizzata e nanoparticelle di carbonio (Single-Wall-Carbon-NanoHorns SWCNHs) e presentano elevata capacità di assorbimento della radiazione solare. Un impianto sperimentale ad hoc è stato realizzato al fine di condurre gli esperimenti. Durante i test, sono stati misurati l’efficienza termica del collettore solare e l’efficienza ottica dei nanofluidi, valutata mediante l’utilizzo di due piranometri per la determinazione dell’irradianza solare assorbita dai nanofluidi stessi. La stabilità dei nanofluidi, valutata mediante misure di assorbanza con spettrofotometro, è stata analizzata nel tempo al variare della portata e della temperatura dei nanofluidi al ricevitore.
Analisi sperimentale di un collettore solare volumetrico operante con nanofluidi
MARROCU, GIACOMO
2021/2022
Abstract
The high energy demand to meet anthropogenic activities, together with the growing environmental and climate change problems, pushes more and more to the use of renewable energy. In the solar thermal sector, flat solar collectors are widely used for the production of domestic hot water; however, the effectiveness of the conversion from solar energy to thermal energy in these collectors is penalized due to the high heat dissipation from the collector surface towards the environment. The present experimental thesis investigates the functioning of a volumetric solar receiver operating with nanofluids as heat transfer fluids. The nanofluids, developed by the Department of Chemical Sciences of the University of Padua, are solutions of deionized water and carbon nanoparticles (Single-Wall-Carbon-NanoHorns SWCNHs) and have a high absorption capacity of solar radiation. An ad hoc experimental setup was created in order to conduct the experiments. During the tests, the thermal efficiency of the solar collector and the optical efficiency of the nanofluids were measured, the optical efficiency was evaluated by using two pyranometers to determine the solar irradiance absorbed by the nanofluids themselves. The stability of the nanofluids, evaluated by means of absorbance measurements made with a spectrophotometer, was analyzed over time as the flow rate and temperature of the nanofluids in the receiver varied.File | Dimensione | Formato | |
---|---|---|---|
Marrocu_Giacomo.pdf
accesso riservato
Dimensione
3.75 MB
Formato
Adobe PDF
|
3.75 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/33251