Among the Eukaryotes, fungi are among the least studied organisms. Despite their importance in shaping and maintaining ecosystems, it is estimated that we currently know only about 1% of the Earth's fungal biodiversity. The aim of this thesis is to improve our understanding of fungal diversity by employing phylogenetic approaches. It includes two distinct studies, concerning two different time scales: one about the deep-time phylogeny, the other about their shallow-time phylogeny of selected fungal clades. The colonisation of the lands by multicellular eukaryotes is one of the less understood events in deep-time Earth’s history. It is still unclear which of the major clades of multicellular eukaryotes pioneered land colonisation and when this event occurred. When focusing on fungi, the earliest terrestrial fungi are estimated about 600 Ma old, based on molecular clock studies, although recent findings of fungal fossils predate their terrestrialisation of about 200 Ma. To clarify the deep-time phylogeny of fungi, and in particularar their pattern of terrestrialisation, I performed a meta-analysis combining phylogenetic information with the observed state of the ecology character for each fungal order. The newly generated, time-calibrated phylogenetic meta-tree of fungi clarifies some aspects of their evolution, but the lack of genome data for some key clades makes the relationships among early lineages unreliable. I categorised the ecology of 258 fungal orders into three main states: marine, freshwater, and terrestrial. By mapping these states on the consensus time-calibrated phylogenetic tree, I found that the habitat of extant fungal species is too variable to allow reconstructing unambiguous ancestral ecological states and to propose a reliable timing of fungal terrestrialisation. Results reveal high evolvability of fungal ecology: most orders and even some species are characterised by the coexistence of multiple ecological states. Fungi are usually studied on a shallow-time scale by inferring phylogenies of closely related species: the standard for these studies is DNA barcoding, but phylogenomic is now used to overcome both stochastic and systematic artefacts. Fungi can be detected in environmental samples, but it is difficult to extract their typically long polyploid genomes in the absence of reference genomes. Because of the growing amount of amplicon sequencing, primary databases remain a useful source of information to study fungal diversity in a classical DNA barcode fashion. However, existing barcoding tools lack a comprehensive pipeline, can be time-consuming and do not take full advantage of metadata associated with sequences. To tackle these issues, I developed a Python package for the automatic barcode analysis. The pipeline is composed of different consecutive steps: I) data retrieval from multiple sources, II) selection of samples, III) automatic cleaning of the alignment, IV) construction of chimeric sequences using sequence identifiers, V) concatenation of different markers, VI) barcoding gap estimation and visualisation, and VII) detection of outliers. The package has been successfully used to define cryptic species and to identify misled samples in several fungal families. It is a useful tool for the quick detection of new taxa from often understudied or unbinned nucleotide collections. It is scalable to any type of organism, to multi-marker barcoding and phylogenomic studies. In this thesis, I studied fungal phylogeny from two chronological perspectives using and developing different methodologies. The two approaches allowed me to explore related issues of fungal diversity that may ultimately contribute to improving our understanding of fungi and other organism diversity.
Nel complesso degli eucarioti, i funghi sono tra gli organismi meno studiati. Malgrado la loro importanza nel modellamento e mantenimento degli ecosistemi, si stima che si conosca soltanto circa l’1% della biodiversità fungina. Lo scopo di questa tesi è di migliorare la comprensione della diversità fungina con l’uso di approcci filogenetici in due scale temporali: una riguardante le filogenesi profonde, l’altra riguardo la filogenesi recente. La colonizzazione delle terre emerse da parte di eucarioti pluricellulari è uno degli eventi meno conosciuti della storia antica della Terra. È ancora incerto quale clade di eucarioti pluricellulari sia stato il pioniere della colonizzazione delle terre emerse e quando questo evento sia avvenuto. Focalizzandosi sui funghi, si stima sulla base di studi di molecular clock, che i più antichi siano di 600 Ma, sebbene recenti ritrovamenti fossili predatino la loro terrestrializzazione di circa 200 Ma. Per chiarire la filogenesi profonda dei funghi, e in particolare i loro pattern di terrestrializzazione, ho eseguito una meta-analisi associando informazioni filogenetiche con lo stato osservato di caratteri ecologici per ogni ordine. Il nuovo meta-albero, generato con calibrazioni temporali, chiarifica alcuni aspetti della loro evoluzione, ma la mancanza di dati genomici per alcuni cladi chiave rende le relazioni tra le linee evolutive più antiche meno affidabili. Ho caratterizzato l’ecologia di 258 ordini di funghi in tre principali stati: marino, dulciacquicolo e terrestre. Attraverso il mapping di questi stati nell’albero consenso, ho trovato che gli habitat delle specie di funghi odierni sono troppo variabili per permettere la ricostruzione di stati ecologici ancestrali univoci e per proporre una data affidabile per la terrestrializzazione fungina. I risultati rivelano una grande evolvability per l’ecologia fungina: molti ordini e persino alcune specie sono caratterizzati dalla coesistenza di più stati ecologici. I funghi sono comunemente studiati in una scala temporale recente, inferendo la filogenesi di specie strettamente correlate: lo standard per questi studi è il DNA barcoding, ma la filogenomica è oggi usata per sorpassare artefatti stocastici e sistematici. I funghi possono essere individuati in campioni ambientali, ma è difficile estrarne i metagenomi, data la loro complessità e l’assenza di genomi di riferimento. Grazie alla grande crescita dell’amplicon sequencing, i database primari rimangono una fonte d’informazione utile per studiare la diversità fungina con l’uso di barcode. Tuttavia, i programmi esistenti mancano di pipeline complete, talora sono molto lenti e non utilizzano pienamente i metadati associati alle sequenze. Per affrontare questi problemi, ho sviluppato un pacchetto di Python per l’analisi automatica di barcoding. La pipeline è composta da alcuni step consecutivi: I) reperimento dei dati da diverse fonti, II) selezione dei campioni, III) pulizia automatica dell’allineamento, IV) costruzione di sequenze chimeriche usando gli identificativi delle sequenze, V) concatenamento di diversi marcatori, VI) stima e visualizzazione del barcoding gap, VII) individuazione di outliers. Il pacchetto è stato usato con successo per individuare specie criptiche e per identificare errori di determinazione in diverse famiglie di funghi. Si tratta di uno strumento utile per la rapida individuazione di nuovi taxa da sequenze nucleotidiche. È utilizzabile su ogni tipo di organismo, barcoding con marcatori multipli e studi filogenomici. In questa tesi ho studiato la filogenesi dei funghi da due prospettive cronologiche, usando e sviluppando diverse metodologie. I due approcci mi hanno permesso di indagare problemi correlati alla diversità fungina e possono contribuire alla loro conoscenza e quella di altri organismi.
Approcci filogenetici per lo studio della diversità fungina
TATTI, ALESSIA
2021/2022
Abstract
Among the Eukaryotes, fungi are among the least studied organisms. Despite their importance in shaping and maintaining ecosystems, it is estimated that we currently know only about 1% of the Earth's fungal biodiversity. The aim of this thesis is to improve our understanding of fungal diversity by employing phylogenetic approaches. It includes two distinct studies, concerning two different time scales: one about the deep-time phylogeny, the other about their shallow-time phylogeny of selected fungal clades. The colonisation of the lands by multicellular eukaryotes is one of the less understood events in deep-time Earth’s history. It is still unclear which of the major clades of multicellular eukaryotes pioneered land colonisation and when this event occurred. When focusing on fungi, the earliest terrestrial fungi are estimated about 600 Ma old, based on molecular clock studies, although recent findings of fungal fossils predate their terrestrialisation of about 200 Ma. To clarify the deep-time phylogeny of fungi, and in particularar their pattern of terrestrialisation, I performed a meta-analysis combining phylogenetic information with the observed state of the ecology character for each fungal order. The newly generated, time-calibrated phylogenetic meta-tree of fungi clarifies some aspects of their evolution, but the lack of genome data for some key clades makes the relationships among early lineages unreliable. I categorised the ecology of 258 fungal orders into three main states: marine, freshwater, and terrestrial. By mapping these states on the consensus time-calibrated phylogenetic tree, I found that the habitat of extant fungal species is too variable to allow reconstructing unambiguous ancestral ecological states and to propose a reliable timing of fungal terrestrialisation. Results reveal high evolvability of fungal ecology: most orders and even some species are characterised by the coexistence of multiple ecological states. Fungi are usually studied on a shallow-time scale by inferring phylogenies of closely related species: the standard for these studies is DNA barcoding, but phylogenomic is now used to overcome both stochastic and systematic artefacts. Fungi can be detected in environmental samples, but it is difficult to extract their typically long polyploid genomes in the absence of reference genomes. Because of the growing amount of amplicon sequencing, primary databases remain a useful source of information to study fungal diversity in a classical DNA barcode fashion. However, existing barcoding tools lack a comprehensive pipeline, can be time-consuming and do not take full advantage of metadata associated with sequences. To tackle these issues, I developed a Python package for the automatic barcode analysis. The pipeline is composed of different consecutive steps: I) data retrieval from multiple sources, II) selection of samples, III) automatic cleaning of the alignment, IV) construction of chimeric sequences using sequence identifiers, V) concatenation of different markers, VI) barcoding gap estimation and visualisation, and VII) detection of outliers. The package has been successfully used to define cryptic species and to identify misled samples in several fungal families. It is a useful tool for the quick detection of new taxa from often understudied or unbinned nucleotide collections. It is scalable to any type of organism, to multi-marker barcoding and phylogenomic studies. In this thesis, I studied fungal phylogeny from two chronological perspectives using and developing different methodologies. The two approaches allowed me to explore related issues of fungal diversity that may ultimately contribute to improving our understanding of fungi and other organism diversity.File | Dimensione | Formato | |
---|---|---|---|
Tatti_Alessia.pdf
accesso riservato
Dimensione
19.21 MB
Formato
Adobe PDF
|
19.21 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/35049