The growing incidence of osteoarthritis (OA), a degenerative disease affecting the whole joint, ideally requires for effective treatments able to reduce pain and slow cartilage tissues degeneration. To date, the only resolutive option to OA is represented by prosthetic implants; however, this strategy is not free from limitations. In order to promote cartilage tissue regeneration, strategies involving Tissue Engineering-based approaches are developing; in particular, focusing on osteochondral interface repair would be extremely appealing. In this thesis work, polylactic acid (PLA) and oxidized polyvinyl alcohol (OxPVA) were explored to mimic bone and cartilage, respectively. PLA is biocompatible polymer, displaying a rigid mechanical behavior, not far from that of cortical bone. By using a 3D computer-design software software, the design of three different scaffolds characterized by different porosities and fiber widths was developed; hence, 3D printing occurred. To better understand the biological behavior of the scaffolds in terms of interaction with cells, in vitro studies were carried out considering adhesion and proliferation of mesenchymal stem cells (HM1-SV40 cell line). Thus, MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay was performed at 7 and 14 days from seeding. A good cell viability was sustained by all the three PLA geometries; in particular, a statistically significant difference (p-value < 0.05) in proliferation was detected in presence of a higher porosity (64.2%) (lower porosity, 28.5%). Scanning Electron Microscopy (SEM) analysis confirmed the MTT data, showing cells distribution over the surface of the PLA scaffolds. Interestingly, cells presence was detected also inside the 3D porous structures suggesting a full-thickness colonization. OxPVA was used to fabricate the scaffold layer mimicking cartilage. To trigger cell adhesion and proliferation within OxPVA-based scaffolds, porous scaffolds were obtained through gelatin incorporation and dissolution. Moreover, the addition of decellularized and homogenized human articular cartilage was used to increase bioactivity of hydrogel scaffolds. Interaction with cells (HM1-SV40) was verified by MTT assay. After 7 and 14 days from seeding, the addition of cartilage ECM showed to provide a statistically significant difference (p-value< 0.005) in cell proliferation with respect to porous OxPVA; however, also ultrastructural modification alone supported cell adhesion. Considering presence of a similar porosity between the scaffold groups (67.91% for the scaffolds with cartilage ECM vs. 63.95% for the scaffolds without the cartilage ECM), the increased bioactivity of OxPVA+25% cartilage ECM may be likely ascribed to the presence of cartilage tissue proteins. At last, a composite scaffold made of PLA and porous OxPVA was successfully developed, by taking as example the natural osteochondral complex. The results gathered revealed as promising, laying the basis for future studies on alternative treatments options to recover osteochondral tissue defects due to OA, through Tissue Engineering strategies.

La crescente incidenza dell'osteoartrite (OA), una malattia degenerativa che colpisce l'intera articolazione, richiede idealmente trattamenti efficaci in grado di ridurre il dolore e rallentare la degenerazione dei tessuti cartilaginei. Ad oggi l'unica opzione risolutiva all'OA è rappresentata dagli impianti protesici; tuttavia, questa strategia non è esente da limitazioni. Al fine di promuovere la rigenerazione del tessuto cartilagineo, si stanno sviluppando strategie che coinvolgono approcci basati sull’Ingegneria Tissutale; in particolare, concentrarsi sulla riparazione dell'interfaccia osteocondrale sarebbe estremamente interessante. In questo lavoro di tesi, l'acido polilattico (PLA) e l'alcol polivinilico ossidato (OxPVA) sono stati studiati per imitare rispettivamente l'osso e la cartilagine. Il PLA è un polimero biocompatibile, che mostra un comportamento meccanico rigido, non lontano da quello dell'osso corticale. Utilizzando un software computer-aided design 3D è stato sviluppato il progetto di tre differenti scaffold caratterizzati da differenti porosità e larghezze di fibra; quindi, si è verificata la stampa 3D. Per comprendere meglio il comportamento biologico degli scaffold in termini di interazione con le cellule, sono stati condotti studi in vitro considerando l'adesione e la proliferazione delle cellule staminali mesenchimali (linea cellulare HM1-SV40). Pertanto, il test MTT (3-[4,5-dimetiltiazol-2-il]-2,5-difeniltetrazolio bromuro) è stato eseguito a 7 e 14 giorni dalla semina. Una buona vitalità cellulare è stata sostenuta da tutte e tre le geometrie PLA; in particolare, è stata rilevata una differenza statisticamente significativa (p-value < 0.05) nella proliferazione cellulare in presenza di una maggiore porosità (64.2%) (minore porosità, 28.5%). L'analisi al microscopio elettronico a scansione (SEM) ha confermato i dati MTT, mostrando la distribuzione delle cellule sulla superficie degli scaffold in PLA. È interessante notare che la presenza di cellule è stata rilevata anche all'interno delle strutture porose 3D suggerendo una colonizzazione a tutto spessore. L’OxPVA è stato utilizzato per fabbricare lo strato dello scaffold che imita la cartilagine. Per innescare l'adesione e la proliferazione cellulare all'interno degli scaffold in OxPVA, sono stati ottenuti scaffold porosi attraverso l'incorporazione e degradazione di gelatina. Inoltre, l'aggiunta di cartilagine articolare umana decellularizzata e omogeneizzata è stata eseguita per aumentare la bioattività degli scaffold di idrogeli. L'interazione con le cellule (HM1-SV40) è stata verificata mediante saggio MTT. Dopo 7 e 14 giorni dalla semina, l'aggiunta di ECM cartilaginea ha mostrato di fornire una differenza statisticamente significativa (p-value<0.005) nella proliferazione cellulare rispetto all'OxPVA poroso; tuttavia, anche la sola modifica ultrastrutturale ha supportato l'adesione cellulare. Considerando la presenza di una porosità simile tra i gruppi di scaffold (67.91% per gli scaffold con ECM cartilaginea vs. 63.95% per gli scaffold senza ECM cartilaginea), l'aumentata bioattività di OxPVA+25% ECM cartilaginea può essere probabilmente ascritta alla presenza di proteine del tessuto cartilagineo. Pertanto, è stato sviluppato con successo uno scaffold composito in PLA e OxPVA poroso, prendendo ad esempio il complesso osteocondrale naturale. I risultati raccolti si sono rivelati promettenti, ponendo le basi per studi futuri su opzioni terapeutiche alternative per recuperare i difetti del tessuto osteocondrale dovuti all'OA, attraverso strategie di Ingegneria Tissutale.

Design and development of PLA/Oxidized PVA composite scaffolds for osteochondral regeneration

BOSCOLO PECCHIE, RICCARDO
2021/2022

Abstract

The growing incidence of osteoarthritis (OA), a degenerative disease affecting the whole joint, ideally requires for effective treatments able to reduce pain and slow cartilage tissues degeneration. To date, the only resolutive option to OA is represented by prosthetic implants; however, this strategy is not free from limitations. In order to promote cartilage tissue regeneration, strategies involving Tissue Engineering-based approaches are developing; in particular, focusing on osteochondral interface repair would be extremely appealing. In this thesis work, polylactic acid (PLA) and oxidized polyvinyl alcohol (OxPVA) were explored to mimic bone and cartilage, respectively. PLA is biocompatible polymer, displaying a rigid mechanical behavior, not far from that of cortical bone. By using a 3D computer-design software software, the design of three different scaffolds characterized by different porosities and fiber widths was developed; hence, 3D printing occurred. To better understand the biological behavior of the scaffolds in terms of interaction with cells, in vitro studies were carried out considering adhesion and proliferation of mesenchymal stem cells (HM1-SV40 cell line). Thus, MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay was performed at 7 and 14 days from seeding. A good cell viability was sustained by all the three PLA geometries; in particular, a statistically significant difference (p-value < 0.05) in proliferation was detected in presence of a higher porosity (64.2%) (lower porosity, 28.5%). Scanning Electron Microscopy (SEM) analysis confirmed the MTT data, showing cells distribution over the surface of the PLA scaffolds. Interestingly, cells presence was detected also inside the 3D porous structures suggesting a full-thickness colonization. OxPVA was used to fabricate the scaffold layer mimicking cartilage. To trigger cell adhesion and proliferation within OxPVA-based scaffolds, porous scaffolds were obtained through gelatin incorporation and dissolution. Moreover, the addition of decellularized and homogenized human articular cartilage was used to increase bioactivity of hydrogel scaffolds. Interaction with cells (HM1-SV40) was verified by MTT assay. After 7 and 14 days from seeding, the addition of cartilage ECM showed to provide a statistically significant difference (p-value< 0.005) in cell proliferation with respect to porous OxPVA; however, also ultrastructural modification alone supported cell adhesion. Considering presence of a similar porosity between the scaffold groups (67.91% for the scaffolds with cartilage ECM vs. 63.95% for the scaffolds without the cartilage ECM), the increased bioactivity of OxPVA+25% cartilage ECM may be likely ascribed to the presence of cartilage tissue proteins. At last, a composite scaffold made of PLA and porous OxPVA was successfully developed, by taking as example the natural osteochondral complex. The results gathered revealed as promising, laying the basis for future studies on alternative treatments options to recover osteochondral tissue defects due to OA, through Tissue Engineering strategies.
2021
Design and development of PLA/Oxidized PVA composite scaffolds for osteochondral regeneration
La crescente incidenza dell'osteoartrite (OA), una malattia degenerativa che colpisce l'intera articolazione, richiede idealmente trattamenti efficaci in grado di ridurre il dolore e rallentare la degenerazione dei tessuti cartilaginei. Ad oggi l'unica opzione risolutiva all'OA è rappresentata dagli impianti protesici; tuttavia, questa strategia non è esente da limitazioni. Al fine di promuovere la rigenerazione del tessuto cartilagineo, si stanno sviluppando strategie che coinvolgono approcci basati sull’Ingegneria Tissutale; in particolare, concentrarsi sulla riparazione dell'interfaccia osteocondrale sarebbe estremamente interessante. In questo lavoro di tesi, l'acido polilattico (PLA) e l'alcol polivinilico ossidato (OxPVA) sono stati studiati per imitare rispettivamente l'osso e la cartilagine. Il PLA è un polimero biocompatibile, che mostra un comportamento meccanico rigido, non lontano da quello dell'osso corticale. Utilizzando un software computer-aided design 3D è stato sviluppato il progetto di tre differenti scaffold caratterizzati da differenti porosità e larghezze di fibra; quindi, si è verificata la stampa 3D. Per comprendere meglio il comportamento biologico degli scaffold in termini di interazione con le cellule, sono stati condotti studi in vitro considerando l'adesione e la proliferazione delle cellule staminali mesenchimali (linea cellulare HM1-SV40). Pertanto, il test MTT (3-[4,5-dimetiltiazol-2-il]-2,5-difeniltetrazolio bromuro) è stato eseguito a 7 e 14 giorni dalla semina. Una buona vitalità cellulare è stata sostenuta da tutte e tre le geometrie PLA; in particolare, è stata rilevata una differenza statisticamente significativa (p-value < 0.05) nella proliferazione cellulare in presenza di una maggiore porosità (64.2%) (minore porosità, 28.5%). L'analisi al microscopio elettronico a scansione (SEM) ha confermato i dati MTT, mostrando la distribuzione delle cellule sulla superficie degli scaffold in PLA. È interessante notare che la presenza di cellule è stata rilevata anche all'interno delle strutture porose 3D suggerendo una colonizzazione a tutto spessore. L’OxPVA è stato utilizzato per fabbricare lo strato dello scaffold che imita la cartilagine. Per innescare l'adesione e la proliferazione cellulare all'interno degli scaffold in OxPVA, sono stati ottenuti scaffold porosi attraverso l'incorporazione e degradazione di gelatina. Inoltre, l'aggiunta di cartilagine articolare umana decellularizzata e omogeneizzata è stata eseguita per aumentare la bioattività degli scaffold di idrogeli. L'interazione con le cellule (HM1-SV40) è stata verificata mediante saggio MTT. Dopo 7 e 14 giorni dalla semina, l'aggiunta di ECM cartilaginea ha mostrato di fornire una differenza statisticamente significativa (p-value<0.005) nella proliferazione cellulare rispetto all'OxPVA poroso; tuttavia, anche la sola modifica ultrastrutturale ha supportato l'adesione cellulare. Considerando la presenza di una porosità simile tra i gruppi di scaffold (67.91% per gli scaffold con ECM cartilaginea vs. 63.95% per gli scaffold senza ECM cartilaginea), l'aumentata bioattività di OxPVA+25% ECM cartilaginea può essere probabilmente ascritta alla presenza di proteine del tessuto cartilagineo. Pertanto, è stato sviluppato con successo uno scaffold composito in PLA e OxPVA poroso, prendendo ad esempio il complesso osteocondrale naturale. I risultati raccolti si sono rivelati promettenti, ponendo le basi per studi futuri su opzioni terapeutiche alternative per recuperare i difetti del tessuto osteocondrale dovuti all'OA, attraverso strategie di Ingegneria Tissutale.
Oxidized PVA
Osteoarthritis
3D Printing
Biomaterials
FEM
File in questo prodotto:
File Dimensione Formato  
Boscolo_Pecchie_Riccardo.pdf

embargo fino al 02/10/2025

Dimensione 38.07 MB
Formato Adobe PDF
38.07 MB Adobe PDF

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/35244