Malnutrition due to micronutrient deficiencies negatively affects the health and socio-economic status of people all over the world. Rice is the primary source of calories for a large part of the population however it delivers limited amounts of micronutrients, including thiamin (also spelled thiamine), also known as vitamin B1, which is essential for cell energy supply in all organisms and therefore represents a vital component of human diet. Biofortification can be an important tool to aid in the fight against micronutrient malnutrition. In plants thiamin biosynthesis takes place in source tissues (green tissues), and transporters are necessary for the movement to sink tissues such as the endosperm in rice, which is the remaining portion of the seed after polishing. PUT3, the only known long-distance thiamin transporter, is involved in shoot to root trafficking, which hints towards the existence of additional long distance B1 transporters, which take care of shoot to the inflorescence and seeds. Biofortified rice lines overexpressing three major thiamin biosynthesis enzymes (AtTHIC, AtTHI1 and AtTH1) the thiamin transporter AtPUT3 and the enzyme synthesizing pyrimidine precursor AIR from phosphoribosyl-N-formylglycineamide, AtPUR5, both singularly and in combination were transformed, genotyped at the T0 generation, and screened at the T1 generation to obtain homozygous lines. In plants only two other types of vitamin B1 transporters have been identified thus far in addition to PUT3, however many factors hint at the existence of more transporters yet to be identified, therefore Gateway cloning system and a yeast-based assay were employed for the identification of novel thiamine transporter in Arabidopsis thaliana. The results confirmed independent transformants with a single copy and complete transgene insertion on one hand and they showed the role of the transporters under investigation in the transport of thiamine on the other. This research will advance biofortification endeavors in rice and aid the understanding of thiamin transport in plants.
La malnutrizione dovuta a carenze di micronutrienti influisce negativamente sulla salute e sullo stato socioeconomico delle persone in tutto il mondo. Il riso è la principale fonte di calorie per gran parte della popolazione, tuttavia fornisce quantità limitate di micronutrienti, tra cui la tiamina, nota anche come vitamina B1, che è essenziale per l'approvvigionamento energetico cellulare in tutti gli organismi e quindi rappresenta un componente vitale della dieta umana. La biofortificazione può essere uno strumento importante per aiutare nella lotta contro la malnutrizione da micronutrienti. Nelle piante la biosintesi della tiamina avviene nei source tissues e sono necessari trasportatori per il movimento ai sink tissues come l'endosperma nel riso. PUT3, l'unico trasportatore di tiamina a lunga distanza noto, è coinvolto nel traffico dai germogli alle radici, il che suggerisce l'esistenza di ulteriori trasportatori a lunga distanza di B1, che si occupano del trasporto dai germogli ai semi, per esempio. Linee di riso biofortificato che sovraesprimono i tre principali enzimi di biosintesi della tiamina (AtTHIC, AtTHI1 e AtTH1), il trasportatore della tiamina AtPUT3, e l'enzima che sintetizza il precursore AIR da formilglicinammide ribonucleotide, AtPUR5, sono stati trasformati sia singolarmente che in combinazione, genotipizzati alla generazione T0, e analizzati alla generazione T1 per ottenere linee omozigoti. Nelle piante sono stati finora identificati solo altri due tipi di trasportatori di vitamina B1 oltre a PUT3; tuttavia, vari fattori suggeriscono l'esistenza di più trasportatori ancora da identificare; pertanto, per l'identificazione di nuovi trasportatori di tiamina in Arabidopsis thaliana sono stati impiegati un sistema di clonazione Gateway e un test su lievito. I risultati hanno confermato eventi di trasformazione indipendenti, con una singola copia e un completo inserimento del transgene da un lato, e hanno mostrato il ruolo dei trasportatori in esame nel trasporto della tiamina dall'altro. Questa ricerca farà avanzare gli sforzi di biofortificazione nel riso e aiuterà a comprendere i meccanismi del trasporto della tiamina nelle piante.
Identification of thiamin transporters and thiamin biofortification in rice
ARTICO, VALENTINA
2021/2022
Abstract
Malnutrition due to micronutrient deficiencies negatively affects the health and socio-economic status of people all over the world. Rice is the primary source of calories for a large part of the population however it delivers limited amounts of micronutrients, including thiamin (also spelled thiamine), also known as vitamin B1, which is essential for cell energy supply in all organisms and therefore represents a vital component of human diet. Biofortification can be an important tool to aid in the fight against micronutrient malnutrition. In plants thiamin biosynthesis takes place in source tissues (green tissues), and transporters are necessary for the movement to sink tissues such as the endosperm in rice, which is the remaining portion of the seed after polishing. PUT3, the only known long-distance thiamin transporter, is involved in shoot to root trafficking, which hints towards the existence of additional long distance B1 transporters, which take care of shoot to the inflorescence and seeds. Biofortified rice lines overexpressing three major thiamin biosynthesis enzymes (AtTHIC, AtTHI1 and AtTH1) the thiamin transporter AtPUT3 and the enzyme synthesizing pyrimidine precursor AIR from phosphoribosyl-N-formylglycineamide, AtPUR5, both singularly and in combination were transformed, genotyped at the T0 generation, and screened at the T1 generation to obtain homozygous lines. In plants only two other types of vitamin B1 transporters have been identified thus far in addition to PUT3, however many factors hint at the existence of more transporters yet to be identified, therefore Gateway cloning system and a yeast-based assay were employed for the identification of novel thiamine transporter in Arabidopsis thaliana. The results confirmed independent transformants with a single copy and complete transgene insertion on one hand and they showed the role of the transporters under investigation in the transport of thiamine on the other. This research will advance biofortification endeavors in rice and aid the understanding of thiamin transport in plants.File | Dimensione | Formato | |
---|---|---|---|
Artico_Valentina.pdf
accesso riservato
Dimensione
3.02 MB
Formato
Adobe PDF
|
3.02 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/35501