The thesis investigates the planning and control problem for a group of mobile agents moving in a partially known workspace. A task will be assigned to each robot in the form of a linear temporal logic (LTL) formula. First an automaton-based method is introduced for the motion planning of a single agent, which guarantees the satisfaction of the assigned LTL task. Then a model-predictive controller considers state and input constraints leading the agent to a safe navigation. Based on a real scenario of a partial-known environment and agents can have only local sensing, two decentralized control strategies are proposed for online re-planning, which rely on a sampling-based algorithm. The first approach assumes local communication between agents, while the second one exploits a more general communication-free case. Finally, the human-in-the-loop scenario is considered, where a human may additionally take control of the agents, a mixed initiative controller is then implemented to prevent dangerous human behaviors while guarantee the satisfaction of the LTL specification. Using the developed ROS software package, several experiments were carried out to demonstrate the effectiveness and the potential applicability of the proposed strategies.

The thesis investigates the planning and control problem for a group of mobile agents moving in a partially known workspace. A task will be assigned to each robot in the form of a linear temporal logic (LTL) formula. First an automaton-based method is introduced for the motion planning of a single agent, which guarantees the satisfaction of the assigned LTL task. Then a model-predictive controller considers state and input constraints leading the agent to a safe navigation. Based on a real scenario of a partial-known environment and agents can have only local sensing, two decentralized control strategies are proposed for online re-planning, which rely on a sampling-based algorithm. The first approach assumes local communication between agents, while the second one exploits a more general communication-free case. Finally, the human-in-the-loop scenario is considered, where a human may additionally take control of the agents, a mixed initiative controller is then implemented to prevent dangerous human behaviors while guarantee the satisfaction of the LTL specification. Using the developed ROS software package, several experiments were carried out to demonstrate the effectiveness and the potential applicability of the proposed strategies.

Reactive task planning for multi-robot systems in partial known environment

FEDELI, GIANMARCO
2021/2022

Abstract

The thesis investigates the planning and control problem for a group of mobile agents moving in a partially known workspace. A task will be assigned to each robot in the form of a linear temporal logic (LTL) formula. First an automaton-based method is introduced for the motion planning of a single agent, which guarantees the satisfaction of the assigned LTL task. Then a model-predictive controller considers state and input constraints leading the agent to a safe navigation. Based on a real scenario of a partial-known environment and agents can have only local sensing, two decentralized control strategies are proposed for online re-planning, which rely on a sampling-based algorithm. The first approach assumes local communication between agents, while the second one exploits a more general communication-free case. Finally, the human-in-the-loop scenario is considered, where a human may additionally take control of the agents, a mixed initiative controller is then implemented to prevent dangerous human behaviors while guarantee the satisfaction of the LTL specification. Using the developed ROS software package, several experiments were carried out to demonstrate the effectiveness and the potential applicability of the proposed strategies.
2021
Reactive task planning for multi-robot systems in partial known environment
The thesis investigates the planning and control problem for a group of mobile agents moving in a partially known workspace. A task will be assigned to each robot in the form of a linear temporal logic (LTL) formula. First an automaton-based method is introduced for the motion planning of a single agent, which guarantees the satisfaction of the assigned LTL task. Then a model-predictive controller considers state and input constraints leading the agent to a safe navigation. Based on a real scenario of a partial-known environment and agents can have only local sensing, two decentralized control strategies are proposed for online re-planning, which rely on a sampling-based algorithm. The first approach assumes local communication between agents, while the second one exploits a more general communication-free case. Finally, the human-in-the-loop scenario is considered, where a human may additionally take control of the agents, a mixed initiative controller is then implemented to prevent dangerous human behaviors while guarantee the satisfaction of the LTL specification. Using the developed ROS software package, several experiments were carried out to demonstrate the effectiveness and the potential applicability of the proposed strategies.
Multi-agent systems
Reactive plan
human-in-the-loop
File in questo prodotto:
File Dimensione Formato  
Fedeli_Gianmarco.pdf

accesso aperto

Dimensione 21.19 MB
Formato Adobe PDF
21.19 MB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/35531