In the context of magnetic resonance imaging, different physiological sensors that measure signals from the human body are used to detect motion or electrophysiology, since magnetic resonance images are very sensitive to physical motion (including vibration of the phantom, gross patient motion, blood flow, respiratory, and cardiac effects). Motion during imaging causes visual artifacts (ghosting), which appear as repeated versions of the main object in the image. To synchronize the motion of the heart and reduce those artifacts, in addition to the magnetic resonance image, the electrocardiogram is acquired. Synchronization between image acquisition and electrical heart activity ensures that the raw data of the image are in the known cardiac phase. To extract the cardiac phase, R-peaks of the ECG signal must be detected. In fact, the R peak is the easiest to detect due to its steepness. The acquisition of electrocardiograph signals is very challenging in this context due to the MR environment and the type of electrode that is used. ECG is an electrical signal and, due to the placement of electrodes on the patient’s skin, it is possible to measure it. In the MR environment, even if wet electrodes are used, the detection of R-peaks is compromised because of the presence of the static magnetic field and gradient fields that distort the useful signal. This situation becomes more complex if, instead of the wet electrodes that are the golden standard for the acquisition of ECG, capacitive electrodes are used. The advantage of using capacitive electrodes instead of wet electrodes is greater comfort for the patient: no direct contact is required between the electrodes and the skin and no need to be undressed, reducing the preparation time of patients. For the detection of R peaks in this complicated framework, the Independent Component Analysis (ICA) is implemented to separate artifacts, noise and useful ECG signals in different sources. In all components R-peaks are detected and finally the component in which only the useful ECG signal is present, is selected. Detector and selector are designed to be robust to capacitive and MR-related artifacts. The proposed algorithm reaches high accuracy in all tested scenarios; it deals with signals affected by different magnetic field strengths and orientations Moreover, various set ups of the capacitive system and different materials used as textile layers are studied to mimic as much as possible the complexity of the clinical practice.
Le immagini della risonanza magnetica (RM) sono molto sensibili al movimento degli organi, per questo non viene acquisita solamente l’immagine ma anche l’elettrocardiogramma (ECG) del paziente. La sincronizzazione tra l’acquisizione dell’immagine (RMI) e la attivita’ elettrica del cuore (ECG), assicura che i dati grezzi dell’immagine siano nella stessa fase cardiaca. Per estrarre la fase cardiaca dev’essere trovato il picco R del segnale ECG. In questo contesto, l’acquisizione dell’ECG e’ molto complessa a causa dell’ambiente RM e del tipo di elettrodi che vengono utilizzati. Il segnale ECG e’ distorto a causa del campo magnetico statico e dei gradienti di campo utilizzati dallo scanner RM. La situazione diventa più complicata se al posto degli elettrodi a gel, golden standard per l’acquisizione del ECG, si utilizzano elettrodi capacitivi per i quali la perdita di contatto con la pelle aumenta il numero di artefatti e il rumore nelle acquisizioni, nascondendo il segnale utile. D’altra parte, con questo tipo di elettrodi, il comfort del paziente e’ migliore: non è richiesto alcun contatto diretto tra gli elettrodi e la pelle evitando problemi di irritazione cutanea. Inoltre non è necessario spogliarsi riducendo il tempo richiesto per la preparazione della acquisizione. In questa tesi viene implementato un algoritmo ottimizzato per il rilevamento dei picchi R in elettrocardiogrammi distorti da artefatti causati sia dal sistema di acquisizione capacitivo, sia dai campi magnetici. Per la rivelazione dei picchi R in questo quadro complicato, viene implementata l’analisi delle componenti indipendenti (ICA) per separare artefatti, rumore e segnale utile in diverse sorgenti. In tutte le componenti vengono rilevati i picchi R e infine viene selezionata la componente in cui è presente solo il segnale utile. L’algoritmo proposto raggiunge un’elevata precisione in tutti gli scenari testati; sono stati analizzati segnali influenzati da diverse intensità e direzioni del campo magnetico. Inoltre varie posizioni del sistema capacitivo e vari materiali sono stati studiati per mimare il più possibile la complessità della pratica clinica.
Robust heart-rate monitoring during MRI by an optimized capacitive electrode array.
GANASSIN, SARA
2021/2022
Abstract
In the context of magnetic resonance imaging, different physiological sensors that measure signals from the human body are used to detect motion or electrophysiology, since magnetic resonance images are very sensitive to physical motion (including vibration of the phantom, gross patient motion, blood flow, respiratory, and cardiac effects). Motion during imaging causes visual artifacts (ghosting), which appear as repeated versions of the main object in the image. To synchronize the motion of the heart and reduce those artifacts, in addition to the magnetic resonance image, the electrocardiogram is acquired. Synchronization between image acquisition and electrical heart activity ensures that the raw data of the image are in the known cardiac phase. To extract the cardiac phase, R-peaks of the ECG signal must be detected. In fact, the R peak is the easiest to detect due to its steepness. The acquisition of electrocardiograph signals is very challenging in this context due to the MR environment and the type of electrode that is used. ECG is an electrical signal and, due to the placement of electrodes on the patient’s skin, it is possible to measure it. In the MR environment, even if wet electrodes are used, the detection of R-peaks is compromised because of the presence of the static magnetic field and gradient fields that distort the useful signal. This situation becomes more complex if, instead of the wet electrodes that are the golden standard for the acquisition of ECG, capacitive electrodes are used. The advantage of using capacitive electrodes instead of wet electrodes is greater comfort for the patient: no direct contact is required between the electrodes and the skin and no need to be undressed, reducing the preparation time of patients. For the detection of R peaks in this complicated framework, the Independent Component Analysis (ICA) is implemented to separate artifacts, noise and useful ECG signals in different sources. In all components R-peaks are detected and finally the component in which only the useful ECG signal is present, is selected. Detector and selector are designed to be robust to capacitive and MR-related artifacts. The proposed algorithm reaches high accuracy in all tested scenarios; it deals with signals affected by different magnetic field strengths and orientations Moreover, various set ups of the capacitive system and different materials used as textile layers are studied to mimic as much as possible the complexity of the clinical practice.File | Dimensione | Formato | |
---|---|---|---|
Ganassin_Sara.pdf
accesso riservato
Dimensione
9.88 MB
Formato
Adobe PDF
|
9.88 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/35534