In many industrial areas, robots are used to perform specific operations on a workpiece in a station. Since these operations are repeated several times, it is important to perform them in the smartest way possible. In the last decades, many different strategies were considered, from the choice of the most suitable tool to use, to the optimization of the desired task in terms of fastness and repeatability. This work aims to find a classification of the areas suitable for the positioning of the robot manipulator inside the robotic cell. This is done by maximizing a cost function that takes into account the robot joints’ axes limits and keeps them far from singularities. As first step, given the position of the objects to pick, the area of research for the base placement is computed. Then, for every position in the area, the picking trajectory is generated and a collision check is performed to control if the robot is able to follow such path. If this is possible, the cost function is applied, and the robot positions are classified based on the score obtained. The generated program is then tested on two general scenarios (obstacle-free and no obstacle-free) and two real scenarios (multi station tending and food products sorting). This thesis has been developed at ‘Euclid Labs S.r.l.’ (in Vittorio Veneto) which designs and develops hi-tech solutions for robotics and industrial automation.
In ambito industriale, i manipolatori meccanici sono utilizzati per compiere specifiche operazioni all’interno di stazioni di lavoro. Poiché queste operazioni sono continuamente ripetute, è importante che esse vengano svolte nella maniera più intelligente possibile. Negli ultimi decenni, sono state considerate innumerevoli strategie, dalla scelta del tool da utilizzare all’ottimizzazione del task desiderato in termini di velocità e ripetibilità. Questo lavoro si concentra sullo studio della classificazione delle aree di posizionamento del robot all’interno della stazione di lavoro. Questo viene fatto massimizzando una funzione di costo che tiene in considerazione i limiti degli assi dei giunti e la lontananza dalle singolarità. Date le posizioni degli oggetti da prendere, viene calcolata l’area di ricerca per il piazzamento della base del robot. Poi, per ogni posizione all’interno dell’area, viene generata la traiettoria che il manipolatore deve compiere per prendere tutti gli oggetti e vengono controllate le eventuali collisioni durante tale percorso. Se non sono presenti collisioni e tutti gli oggetti sono raggiungibili, viene applicata la funzione di costo e le posizioni ottenute vengono classificate in base al punteggio ottenuto. L’algoritmo generato è stato testato su due scenari più generali (senza e con presenza di ostacolo) e due scenari reali (asservimento multistazione e sorting di prodotti alimentari). Questa tesi è stata sviluppata in ‘Euclid Labs S.r.l.’ (Vittorio Veneto) che disegna e sviluppa soluzioni hi-tech per robotica e automazione industriale.
Base placement optimization of a manipulator in a robotic cell
PAVARIN, LAURA
2021/2022
Abstract
In many industrial areas, robots are used to perform specific operations on a workpiece in a station. Since these operations are repeated several times, it is important to perform them in the smartest way possible. In the last decades, many different strategies were considered, from the choice of the most suitable tool to use, to the optimization of the desired task in terms of fastness and repeatability. This work aims to find a classification of the areas suitable for the positioning of the robot manipulator inside the robotic cell. This is done by maximizing a cost function that takes into account the robot joints’ axes limits and keeps them far from singularities. As first step, given the position of the objects to pick, the area of research for the base placement is computed. Then, for every position in the area, the picking trajectory is generated and a collision check is performed to control if the robot is able to follow such path. If this is possible, the cost function is applied, and the robot positions are classified based on the score obtained. The generated program is then tested on two general scenarios (obstacle-free and no obstacle-free) and two real scenarios (multi station tending and food products sorting). This thesis has been developed at ‘Euclid Labs S.r.l.’ (in Vittorio Veneto) which designs and develops hi-tech solutions for robotics and industrial automation.File | Dimensione | Formato | |
---|---|---|---|
Pavarin_Laura.pdf
accesso riservato
Dimensione
4.13 MB
Formato
Adobe PDF
|
4.13 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/36518