In this work are presented the design and the tools employed for the development of Headphone Simulator, an innovative web application aimed at helping audiophiles to buy new models of high-fidelity headphones. The main purpose of this application is to simulate the auditory characteristics that would be obtained by employing a given pair of headphones while another headphone model is effectively being worn. By implementing this procedure, the application allows to help and guide audiophiles who already own a pair of high-fidelity headphones in the decision-making process when buying a new headphone model. This dissertation proposes only the analytical study of a first mathematical model aimed at realizing the functioning of the Headphone Simulator. The fundamental hypothesis characterizing this designed model assumes that headphones behave like linear, time invariant systems (filters) with respect to the audio signal given at their input. In this way, the headphone simulation can be obtained through convolution and deconvolution operations of the respective impulsive responses. The latter was purchased by crinacle, a well-known seller belonging to the audiophile community. Besides the signal processing scheme that allows performing the simulation of high-fidelity headphones, it is introduced also a model to characterize analytically the measurements of impulsive responses. The study of such a model is fundamental in order to be able to obtain a correct execution of the headphone simulation. The practical implementation of the application has been developed through the Python programming language and Room Eq Wizard, a software that allows to measure the transfer functions of acoustic systems and displays the corresponding frequency, phase and impulse responses and various quantities derived from them. Finally, the results obtained from the theoretical analysis and the practical implementation of this first version of Headphone Simulator will be discussed, emphasizing its advantages, disadvantages and possible changes that allow improving its performance.
In questo lavoro vengono presentati la progettazione e gli strumenti utilizzati per lo sviluppo di Headphone Simulator, un'applicazione web innovativa indirizzata ad audiofili intenti ad acquistare un nuovo modello di cuffie ad alta fedeltà. Lo scopo di questa applicazione è quello di permettere di simulare le caratteristiche uditive che sarebbero ottenute utilizzando un determinato paio di cuffie mentre un altro modello viene effettivamente indossato. Tramite l'attuazione di questa procedura, l'applicazione consente di aiutare e guidare gli audiofili che già posseggono un paio di cuffie ad alta fedeltà nel processo di decisione durante l'acquisto. In questa tesi viene trattato solamente lo studio di un primo modello matematico volto a realizzare il funzionamento di Headphone Simulator. Tale modello prevede di assumere che le cuffie si comportino come sistemi lineari tempo invarianti (filtri) rispetto al segnale audio dato al loro ingresso. In questo modo, la simulazione può essere ottenuta tramite operazioni di convoluzione e deconvoluzione delle rispettive risposte impulsive. Quest'ultime sono state acquistate da crinacle, un noto venditore che appartiene alla comunità degli audiofili. Oltre allo schema di elaborazione del segnale che permette di effettuare la simulazione di cuffie ad alta fedeltà, viene anche introdotto un modello per caratterizzare analiticamente le misurazioni delle risposte impulsive. Lo studio di tale modello è fondamentale per potere ottenere un'esecuzione corretta della simulazione di cuffie. L'implementazione pratica dell'applicazione è stata svolta tramite il linguaggio di programmazione Python e Room Eq Wizard, un software che permette di misurare le funzioni di trasferimento di sistemi acustici e visualizzare le corrispondenti risposte in frequenza, di fase, risposte impulsive e infine varie quantità derivanti da quest'ultime. Nella tesi verranno discussi i risultati ottenuti dall'analisi teorica e l'implementazione pratica di questa prima versione di Headphone Simulator, andandone a sottolineare i vantaggi, svantaggi ed possibili modifiche che permettono di poterne migliorare le prestazioni.
Progettazione e sviluppo di un sistema di simulazione per l’analisi delle trasformazioni lineari in cuffie ad alta fedeltà
GORGHETTO, LUCA
2021/2022
Abstract
In this work are presented the design and the tools employed for the development of Headphone Simulator, an innovative web application aimed at helping audiophiles to buy new models of high-fidelity headphones. The main purpose of this application is to simulate the auditory characteristics that would be obtained by employing a given pair of headphones while another headphone model is effectively being worn. By implementing this procedure, the application allows to help and guide audiophiles who already own a pair of high-fidelity headphones in the decision-making process when buying a new headphone model. This dissertation proposes only the analytical study of a first mathematical model aimed at realizing the functioning of the Headphone Simulator. The fundamental hypothesis characterizing this designed model assumes that headphones behave like linear, time invariant systems (filters) with respect to the audio signal given at their input. In this way, the headphone simulation can be obtained through convolution and deconvolution operations of the respective impulsive responses. The latter was purchased by crinacle, a well-known seller belonging to the audiophile community. Besides the signal processing scheme that allows performing the simulation of high-fidelity headphones, it is introduced also a model to characterize analytically the measurements of impulsive responses. The study of such a model is fundamental in order to be able to obtain a correct execution of the headphone simulation. The practical implementation of the application has been developed through the Python programming language and Room Eq Wizard, a software that allows to measure the transfer functions of acoustic systems and displays the corresponding frequency, phase and impulse responses and various quantities derived from them. Finally, the results obtained from the theoretical analysis and the practical implementation of this first version of Headphone Simulator will be discussed, emphasizing its advantages, disadvantages and possible changes that allow improving its performance.File | Dimensione | Formato | |
---|---|---|---|
Gorghetto_Luca.pdf
accesso riservato
Dimensione
7.31 MB
Formato
Adobe PDF
|
7.31 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/39198