The objective of this work is to investigate the physics of combustion in hybrid rockets by using RANS simulations run on commercial CFD software (Ansys Fluent) and in particular the role of density in the determination of regression rate in the solid fuel. Although this technology did important steps in the last decades, many aspects are still not well understood. Here the necessity to conduct a series of virtual experiments, firstly to asses the validity of the employed models, then to extrapolate from the data interesting insights regarding the physics beneath the phenomena in question. The ability to determine, even only qualitatively, which characteristics of the fuel affect the behavior of the entire system could direct the efforts of the research to a better understanding of the physics or the industry to search for new, highly efficient propellants. Three types of experiments have been set up: cold-flow isothermal, cold-flow non-isothermal and hot combusting-flow simulations. In the former two the idea that the density of the injected species modify the behavior of the boundary layer has been investigated in a simplified environment. After a good qualitative understanding of the effect has been built, the work proceed with setting up other simulations of real hybrid rockets to compare the results and prediction of the simplified cases with the ones involving combustion phenomena. The validation of the former two cases has been conducted on the experimental and numerical data provided by Prokein and Wolfersdorf [23], Landis and Mills [15], Romanenko and Kharchenko [24] and Meinert et al. [18]. A good agreement with these data has been found. The third case, instead, has been verified on the experiments performed at Università Federico II di Napoli by Carmicino and Di Martino ([3], [5], [7]) on two hydrid propulsion systems, one rated 200 N and the other 1 kN, both based on HDPE/HTPB + gaseous oxygen. For the mesh generation ICEM CFD (Ansys) has been used to create a high quality 2D grid and an UDF (User Defined Function) has been coupled with Fluent to impose the correct boundary conditions to simulate transpiration or blowing.
L’obiettivo di questo studio è quello di investigare la fisica della combustione dei razzi ibridi tramite simulationi RANS compiute da un software CFD commerciale (Ansys Fluent), in particolare il ruolo della densità nella determinazione della velocità di regressione dei combustibili solidi. Nonostante questa tecnologia abbia compiuto passi importanti nelle ultime decadi, molti aspetti sono ancora poco compresi. Da qui la necessità di condurre una serie di esperimenti virtuali, prima per assicurarsi della validità dei modelli matematici impiegati, poi per estrapolare dai dati interessanti spunti riguardo la fisica sottostante il fenomeno in questione. L’abilità di determinare, anche solo qualitativamente, quale caratteristica del carburante influisca sul funzionamento dell’intero sistema potrebbe indirizzare gli sforzi dei ricercatori in comprendere meglio la fisica o l’industria a cercare nuovi ed efficienti carburanti. Tre tipi di esperimenti sono stati portati a termine: simulazioni a freddo isoterme, non-isoterme e con combustione. Nelle prime due l’idea che la densità della specie chimica iniettata possa avere un’influenza sul comportamento dello strato limite è stata investigata in un caso semplificato. Dopo aver ottenuto una buona comprensione dell’effetto, si è proceduto ad impostare delle simulazioni di veri razzi ibridi per comparare i risultati dei casi con combustione con le predizioni di quelli semplificati. La validazione delle prime due simulazioni è stata condotta su dati sperimentali e numerici forniti da Prokein e Wolfersdorf [23], Landis e Mills [15], Romanenko e Kharchenko [24] and Meinert et al. [18]. Un buon accordo con questi dati è stato trovato. Il terzo caso, invece, è stato verificato con test portati a termine all’Università Federico II di Napoli da Carmicino e Di Martino ([3], [5], [7]) su due propulsori ibridi, uno da 200 N e l’altro da 1kN, entrambi basati su HDPE/HTPB e ossigeno gassoso. Per la generazione della mesh è stato usato ICEM CFD (Ansys) per creare griglie computazionali 2D di alta qualità e una UDF (User Defined Function) è stata accoppiata a Fluent per generare le condizioni al contorno corrette a simulare la traspirazione.
ANALISI NUMERICA DELLA FISICA DELLA PROPULSIONE A RAZZO IBRIDA
RAMPAZZO, ALESSANDRO
2021/2022
Abstract
The objective of this work is to investigate the physics of combustion in hybrid rockets by using RANS simulations run on commercial CFD software (Ansys Fluent) and in particular the role of density in the determination of regression rate in the solid fuel. Although this technology did important steps in the last decades, many aspects are still not well understood. Here the necessity to conduct a series of virtual experiments, firstly to asses the validity of the employed models, then to extrapolate from the data interesting insights regarding the physics beneath the phenomena in question. The ability to determine, even only qualitatively, which characteristics of the fuel affect the behavior of the entire system could direct the efforts of the research to a better understanding of the physics or the industry to search for new, highly efficient propellants. Three types of experiments have been set up: cold-flow isothermal, cold-flow non-isothermal and hot combusting-flow simulations. In the former two the idea that the density of the injected species modify the behavior of the boundary layer has been investigated in a simplified environment. After a good qualitative understanding of the effect has been built, the work proceed with setting up other simulations of real hybrid rockets to compare the results and prediction of the simplified cases with the ones involving combustion phenomena. The validation of the former two cases has been conducted on the experimental and numerical data provided by Prokein and Wolfersdorf [23], Landis and Mills [15], Romanenko and Kharchenko [24] and Meinert et al. [18]. A good agreement with these data has been found. The third case, instead, has been verified on the experiments performed at Università Federico II di Napoli by Carmicino and Di Martino ([3], [5], [7]) on two hydrid propulsion systems, one rated 200 N and the other 1 kN, both based on HDPE/HTPB + gaseous oxygen. For the mesh generation ICEM CFD (Ansys) has been used to create a high quality 2D grid and an UDF (User Defined Function) has been coupled with Fluent to impose the correct boundary conditions to simulate transpiration or blowing.File | Dimensione | Formato | |
---|---|---|---|
Master_s_Thesis_Inglese_PDF_A.pdf
accesso aperto
Dimensione
7.17 MB
Formato
Adobe PDF
|
7.17 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/40004