Unique deformation mechanisms and mechanical properties make auxetic materials a potential application tool in engineering and industry, such as aerospace, automotive, military and more. The following paper presents the study of the indentation behavior of graded auxetic materials with the aim of showing possible advantages over conventional materials. Auxetic material is a material with a negative Poisson ratio which, unlike conventional materials, when subjected to a uniaxial tensile or compressive state shows lateral expansion or compression, respectively. The term graded refers to multifunctional materials, whose properties gradually change along a specific direction, characterized by a variation in the microstructure, porosity and/or composition with the aim of controlling thermal or structural properties. This study was mainly focused on periodic lattice structures, which consist of cells of given size and geometry periodically repeated in three-dimensional space. The auxetic reticular structure to be analyzed will be the chiral hexagonal cell structure. With the aim of studying the indentation behavior, MSC Patran and MSC Nastran have been used for the realizations of the structural analyses FEM, while the CATIA V5 software was used for the realization of geometries and finally Excel and MATLAB for the analysis and data collection. This paper is divided into four main chapters. In the first chapter a description of the state of the art of auxetic materials is presented, showing general properties and characteristics, classification, main fields of application and a brief study on additive manufacturing technology. In the second chapter, after a brief theoretical background regarding the micropolar theory, useful for the study of the mechanical behavior of chiral structures, the homogenization technique will be described, which in turn uses an energetic approach. It allows to replace a periodic discrete material in a continuous material obtaining the equivalent mechanical properties in the plane in an easy way facilitating the realization of the FEM model, reducing the number of elements, and obtaining shorter calculation times. In the third chapter, by comparing the plane displacements of a detailed honeycomb model and of the respective homogenized model both subjected to the same constraint and load conditions, the goodness and validity of the homogenization method will be verified so that it can be used for the realization of the FEM models in subsequent simulations. The fourth and final chapter will present the results of FEM simulations related to indentation tests. Such simulations will be based on the Hertz contact theory, on the contact between a cylindrical indenter and a plate and will aim to show how a negative Poisson ratio, typical of auxetic structures, play a key role in increasing indentation resistance. Finally, by dividing a plate horizontally into three layers and associating each of them with a different homogenized honeycomb model (each with a different radius length of the cell representative of the reticular structure), it will be possible to create two graded configurations. By simulating the indentation behavior for each individual model, it will be possible to show whether graded auxetic structures, compared with the respective auxetic structures with uniform cellular design, can present or not further advantages in terms of indentation resistance.
I particolari meccanismi di deformazione e proprietà meccaniche uniche rendono i materiali auxetici un potenziale strumento applicativo in ambito ingegneristico e nel settore industriale, come quello aerospaziale, automobilistico, militare e altro ancora. Nel seguente elaborato viene presentato lo studio del comportamento ad indentazione dei materiali auxetici graded con l’obbiettivo di mostrare i possibili vantaggi rispetto ai materiali convenzionali. Per materiale auxetico si intende un materiale con rapporto di Poisson negativo che, differentemente dai materiali convenzionali, se sottoposto a uno stato di trazione o compressione uniassiale mostra rispettivamente una dilatazione o compressione laterale. Con il termine graded ci si riferisce a materiali multifunzionali, le cui proprietà cambiano gradualmente lungo una specifica direzione, caratterizzati in particolare da una variazione nella microstruttura, porosità e/o nella composizione con l’obbiettivo di controllare proprietà termiche o strutturali. Tale studio è stato incentrato principalmente su strutture reticolari periodiche, le quali sono costituite da celle di data dimensione e geometria ripetute in maniera periodica nello spazio tridimensionale. La struttura reticolare auxetica che verrà analizzata sarà la struttura con cella esagonale chirale. Con l’obbiettivo di studiarne il comportamento ad indentazione, per le realizzazioni delle analisi strutturali FEM è stato fatto uso dei software MSC Patran e MSC Nastran, mentre per le realizzazioni delle geometrie è stato impiegato l’uso del software CAD CATIA V5 e infine di Excel e MATLAB per l’analisi e raccolta dei dati. Il presente elaborato è diviso in quattro capitoli principali. Nel primo capitolo viene presentata una descrizione dello stato dell’arte dei materiali auxetici, mostrandone proprietà e caratteristiche generali, classificazione, principali campi applicativi e un breve approfondimento riguardante la tecnologia dell’additive manufacturing. Nel secondo capitolo, dopo un breve background teorico riguardante la teoria micropolare, utile per lo studio del comportamento meccanico delle strutture chirali, verrà descritta la tecnica di omogeneizzazione che sfrutta a sua volta un approccio energetico. Essa permette di sostituire un materiale discreto periodico in un materiale continuo, ricavando le proprietà meccaniche equivalenti nel piano in maniera agevole e facilitando la realizzazione del modello FEM, riducendo il numero di elementi e ottenendo tempi di calcolo inferiori. Nel terzo capitolo, confrontando gli spostamenti nel piano di un modello honeycomb di dettaglio e del rispettivo modello omogeneizzato sottoposti entrambi alle medesime condizioni di vincolo e di carico, verrà verificata la bontà e validità del metodo di omogeneizzazione così da poter essere impiegato per la realizzazione dei modelli FEM nelle simulazioni successive. Nel quarto e ultimo capitolo saranno esposti i risultati delle simulazioni FEM relative a prove di indentazione. Tali simulazioni si baseranno sulla teoria del contatto di Hertz, in particolare sul contatto tra un indentatore cilindrico e una piastra e avranno lo scopo di mostrare come un rapporto di Poisson negativo, tipico delle strutture auxetiche, abbia un ruolo fondamentale per un aumento della resistenza ad indentazione. Infine, suddividendo orizzontalmente una piastra in tre layers (strati) e associando a ognuno di esso un diverso modello honeycomb omogeneizzato (ognuno con una diversa lunghezza del raggio della cella rappresentativa della struttura reticolare), sarà possibile realizzare due configurazioni graded. Simulando il comportamento ad indentazione per ogni singolo modello sarà possibile mostrare se strutture auxetiche graded, confrontate con le rispettive strutture auxetiche con design cellulare uniforme, possano presentare o meno ulteriori vantaggi in termini di resistenza ad indentazione.
Studio del comportamento ad indentazione dei graded auxetic materials
VICARI, LUCA
2021/2022
Abstract
Unique deformation mechanisms and mechanical properties make auxetic materials a potential application tool in engineering and industry, such as aerospace, automotive, military and more. The following paper presents the study of the indentation behavior of graded auxetic materials with the aim of showing possible advantages over conventional materials. Auxetic material is a material with a negative Poisson ratio which, unlike conventional materials, when subjected to a uniaxial tensile or compressive state shows lateral expansion or compression, respectively. The term graded refers to multifunctional materials, whose properties gradually change along a specific direction, characterized by a variation in the microstructure, porosity and/or composition with the aim of controlling thermal or structural properties. This study was mainly focused on periodic lattice structures, which consist of cells of given size and geometry periodically repeated in three-dimensional space. The auxetic reticular structure to be analyzed will be the chiral hexagonal cell structure. With the aim of studying the indentation behavior, MSC Patran and MSC Nastran have been used for the realizations of the structural analyses FEM, while the CATIA V5 software was used for the realization of geometries and finally Excel and MATLAB for the analysis and data collection. This paper is divided into four main chapters. In the first chapter a description of the state of the art of auxetic materials is presented, showing general properties and characteristics, classification, main fields of application and a brief study on additive manufacturing technology. In the second chapter, after a brief theoretical background regarding the micropolar theory, useful for the study of the mechanical behavior of chiral structures, the homogenization technique will be described, which in turn uses an energetic approach. It allows to replace a periodic discrete material in a continuous material obtaining the equivalent mechanical properties in the plane in an easy way facilitating the realization of the FEM model, reducing the number of elements, and obtaining shorter calculation times. In the third chapter, by comparing the plane displacements of a detailed honeycomb model and of the respective homogenized model both subjected to the same constraint and load conditions, the goodness and validity of the homogenization method will be verified so that it can be used for the realization of the FEM models in subsequent simulations. The fourth and final chapter will present the results of FEM simulations related to indentation tests. Such simulations will be based on the Hertz contact theory, on the contact between a cylindrical indenter and a plate and will aim to show how a negative Poisson ratio, typical of auxetic structures, play a key role in increasing indentation resistance. Finally, by dividing a plate horizontally into three layers and associating each of them with a different homogenized honeycomb model (each with a different radius length of the cell representative of the reticular structure), it will be possible to create two graded configurations. By simulating the indentation behavior for each individual model, it will be possible to show whether graded auxetic structures, compared with the respective auxetic structures with uniform cellular design, can present or not further advantages in terms of indentation resistance.File | Dimensione | Formato | |
---|---|---|---|
Vicari_Luca.pdf
accesso riservato
Dimensione
5.85 MB
Formato
Adobe PDF
|
5.85 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/40005