This thesis reports the results of a research conducted at one of the largest hospitals in Madrid during the period January 2022-October 2022. Following a theoretical framework, it was possible to apply Lean methodology to the process of diagnosis and treatment of 'breast cancer' and to propose a new management model capable of increasing quality and decreasing waiting times for patients. The uniqueness of this research lies in the approach that was adopted during data collection and processing. In fact, a 'holistic' working method was followed, considering the activities performed in the different hospital departments and on the territory. This made it possible to create a flow chart, unique in the literature, of the entire process of breast cancer diagnosis and treatment, and to represent the flow of patients through various visual mappings. In addition, quantitative process mining, statistical simulation and logistical techniques were used to base evaluations on historical data in the hospital information system. In this way, it was possible to identify critical points in the process, analyse the causes of delays and propose a Lean improvement plan. The latter involves applying 'Just In Time' and 'Jidoka', the two pillars of the Toyota Production System, and re-planning the layout of departments in order to increase the value provided to patients. By applying these techniques in the right way, under the guidance of an experienced Lean consultant and with the support of the medical staff, the new management model allows a decrease in the lead time of the staging sub-process by 85 per cent, i.e. allowing the treatment of tumours to begin weeks earlier. With this thesis, it has thus been demonstrated that the adoption of a holistic Lean approach is a necessary condition for the effective improvement of healthcare processes concerning the chronically ill.
Questa tesi riporta i risultati di una ricerca condotta presso uno dei più grandi ospedali di Madrid nel periodo gennaio 2022-ottobre 2022. Seguendo un framework teorico è stato possibile applicare la metodologia Lean al processo di diagnosi e trattamento del “tumore al seno” e proponendo un nuovo modello di gestione capace di aumentare la qualità e diminuire i tempi di attesa dei pazienti. L’unicità di questa ricerca risiede nell’approccio che è stato adottato durante la raccolta e l’elaborazione dei dati. Si è infatti seguita una modalità di lavoro “olistica”, considerando le attività eseguite nei diversi reparti ospedalieri e sul territorio. Ciò ha permesso di creare un flow chart, unico in letteratura, dell’intero processo di diagnosi e trattamento del tumore al seno e di rappresentare il flusso di pazienti attraverso varie mappature visuali. A quest’ultime sono state, inoltre, affiancate tecniche quantitative di process mining, di simulazione statistica e di logistica al fine basare le valutazioni sui dati storici presenti nel sistema informativo ospedaliero. In questo modo è stato possibile individuare le criticità del processo, analizzare le cause dei ritardi e proporre un piano di miglioramento Lean. Quest’ultimo prevede di applicare “Just In time” e “Jidoka”, i due pilastri del Toyota Production System, e di ripianificare il layout dei reparti al fine di aumentare il valore fornito ai pazienti. Applicando queste tecniche nel modo corretto, sotto la guida di un consulente Lean esperto e con il supporto del personale sanitario, il nuovo modello gestionale consente una diminuzione del lead time del sottoprocesso di staging dell’85%, permettendo cioè di iniziare il trattamento dei tumori con settimane di anticipo. Con questa tesi si è quindi riusciti a dimostrare che l’adozione di un approccio Lean olistico è una condizione necessaria per migliorare efficacemente i processi sanitari riguardanti i malati cronici.
VERSO UN APPROCCIO OLISTICO AL LEAN THINKING IN SANITÀ: APPLICAZIONE AL PROCESSO DI DIAGNOSI E TRATTAMENTO DEL TUMORE AL SENO
MANENTE, SAMUELE
2021/2022
Abstract
This thesis reports the results of a research conducted at one of the largest hospitals in Madrid during the period January 2022-October 2022. Following a theoretical framework, it was possible to apply Lean methodology to the process of diagnosis and treatment of 'breast cancer' and to propose a new management model capable of increasing quality and decreasing waiting times for patients. The uniqueness of this research lies in the approach that was adopted during data collection and processing. In fact, a 'holistic' working method was followed, considering the activities performed in the different hospital departments and on the territory. This made it possible to create a flow chart, unique in the literature, of the entire process of breast cancer diagnosis and treatment, and to represent the flow of patients through various visual mappings. In addition, quantitative process mining, statistical simulation and logistical techniques were used to base evaluations on historical data in the hospital information system. In this way, it was possible to identify critical points in the process, analyse the causes of delays and propose a Lean improvement plan. The latter involves applying 'Just In Time' and 'Jidoka', the two pillars of the Toyota Production System, and re-planning the layout of departments in order to increase the value provided to patients. By applying these techniques in the right way, under the guidance of an experienced Lean consultant and with the support of the medical staff, the new management model allows a decrease in the lead time of the staging sub-process by 85 per cent, i.e. allowing the treatment of tumours to begin weeks earlier. With this thesis, it has thus been demonstrated that the adoption of a holistic Lean approach is a necessary condition for the effective improvement of healthcare processes concerning the chronically ill.File | Dimensione | Formato | |
---|---|---|---|
TESI Samuele Manente pdfA.pdf
accesso riservato
Dimensione
5.95 MB
Formato
Adobe PDF
|
5.95 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/41526