In recent years, part of the research in group theory has focused on the study of graphs associated to them. In this thesis work some properties of a certain graph associated to a profinite group are analyzed: the Virually generating graph. This graph has as a set of vertices the elements of the group and two vertices are adjacent if and only if they generate an open subgroup of G. In previous works it has been shown that in the prosolvable case this graph is not connected. The question about the connection has therefore moved to the pronilpotent case, specifically it is shown that the graph is connected when G is free 2-generated or (under appropriate hypotheses) when it is abelian. In the last chapter of the thesis the Virtually Generating Graph of the Nottingham group is studied and it is shown that also in this case the graph is connected with diameter 4. This last group is relevant in the theory because every countable based pro-p-group can be embedded in it as a closed subgroup. Despite having studied some particular cases, the problem about the connection of the Virtually Generating Graph remains open in the case of a generic pronilpotent group.
Negli ultimi anni parte della ricerca nella teoria dei gruppi si è concentrata sullo studio di grafi associati ad essi. In questo lavoro di tesi vengono analizzate alcune proprietà di un grafo associato ad un gruppo profinito: il Virually generating graph. Esso ha come insieme di vertici gli elementi del gruppo e due vertici sono adiacenti se e solo se generano un sottogruppo aperto di G. In precedenti lavori è stato mostrato come nel caso prorisolubile tale grafo non sia connesso. L'indagine circa la connessione viene dunque spostata nel caso pronilpotente, nello specifico si mostra che il grafo è connesso quando G è libero 2-generato oppure (sotto opportune ipotesi) quando è abeliano. Nell'ultimo capitolo della tesi viene studiato il Virtually Generating Graph del gruppo di Nottingham e si mostra che anche in questo caso il grafo è connesso con diametro 4. Quest'ultimo gruppo è rilevante nella teoria perché ogni pro-p-gruppo countable based può essere immerso in esso come sottogruppo chiuso. Pur avendo studiato alcuni casi particolari, il problema circa la connessione del Virtually Generating Graph rimane aperto nel caso di un un generico gruppo pronilpotente.
Studio del Virtually Generating Graph di alcuni gruppi profiniti
MORI, FABRIZIO
2021/2022
Abstract
In recent years, part of the research in group theory has focused on the study of graphs associated to them. In this thesis work some properties of a certain graph associated to a profinite group are analyzed: the Virually generating graph. This graph has as a set of vertices the elements of the group and two vertices are adjacent if and only if they generate an open subgroup of G. In previous works it has been shown that in the prosolvable case this graph is not connected. The question about the connection has therefore moved to the pronilpotent case, specifically it is shown that the graph is connected when G is free 2-generated or (under appropriate hypotheses) when it is abelian. In the last chapter of the thesis the Virtually Generating Graph of the Nottingham group is studied and it is shown that also in this case the graph is connected with diameter 4. This last group is relevant in the theory because every countable based pro-p-group can be embedded in it as a closed subgroup. Despite having studied some particular cases, the problem about the connection of the Virtually Generating Graph remains open in the case of a generic pronilpotent group.File | Dimensione | Formato | |
---|---|---|---|
Tesi Magistrale Fabrizio Mori pdfa.pdf
accesso aperto
Dimensione
340.02 kB
Formato
Adobe PDF
|
340.02 kB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/42099