Today, for the treatment of primary pelvic tumours, amputation of the limb can be avoided thanks to customised prosthetic reconstruction of the hemipelvis. This type of implants, 3D-printed using the additive manufacturing technique, have proven their worth in terms of reducing surgery time and functional recovery of the patient. This thesis project is part of a larger study carried out at the Computational Bioengineering Laboratory of the Rizzoli Orthopaedic Institute (BO). The aim of the study is to evaluate the long- term biomechanical stability of customised pelvic reconstructions during daily activities, in terms of kinematics, kinetics, internal stresses and deformations. The first phase of the study involved the realisation and analysis of musculoskeletal models of a cohort of six patients, from gait-analysis data, obtaining good results from the point of view of functional recovery, although presenting some asymmetries in muscle forces and joint reactions between intact and operated hemipelvises. Starting from these results, the aim of this thesis work is to construct customised finite element models of patients with pelvic reconstruction following cancer surgery in order to perform a biomechanical structural analysis in the long-term post-operative period, with loading conditions simulating daily motor activities. Specifically, models (FE) of two patients were constructed using a robust and repeatable modelling procedure previously developed in the laboratory. For both clinical cases, peak hip reaction instants were simulated for both the intact and operated side during walking and squatting, using the results of the customised musculoskeletal models as load inputs. In one of the two clinical cases analysed, mobilisation of a pubic screw was evident from the follow-up computed tomography images and it was decided to test both the ideal condition of correct osseointegration and mobilisation in order to assess the influence of this component in the overall load transmission. The results were analysed with the aim of verifying the long-term safety of the prosthesis, identifying possible fracture risk zones in the prosthesis and assessing possible areas of the bone at risk of resorption. The results obtained show stresses on the prosthesis below the fracture limits for Titanium alloy (approximately 450 MPa) and deformations in the bone that remain within the physiological ranges reported in the literature (± 3000 μstrain). The analysis of the results obtained from the two clinical cases examined, together with the excellent results already highlighted by the good functional recovery of the patients, seem to suggest a good long-term stability of the prosthesis.
Ad oggi, per il trattamento dei tumori primari pelvici è possibile evitare l’amputazione dell’arto, grazie alla ricostruzione protesica personalizzata dell'emipelvi. Questo tipo di impianti, stampati in 3D con la tecnica dell’additive manufacturing, si sono dimostrati validi in termini di riduzione dei tempi di intervento chirurgico e recupero funzionale del paziente. Questo progetto di tesi fa parte di uno studio più ampio svolto presso il Laboratorio di Bioingegneria Computazionale dell’Istituto Ortopedico Rizzoli (BO). Lo studio ha l’obiettivo di valutare la stabilità biomeccanica a lungo termine di ricostruzioni pelviche personalizzate durante attività quotidiane, in termini di cinematica, cinetica, tensioni interne e deformazioni. La prima fase dello studio ha previsto la realizzazione e analisi dei modelli muscoloscheletrici di una coorte di sei pazienti, a partire da dati di gait-analysis, ottenendo buoni risultati dal punto di vista del recupero funzionale, pur presentando alcune asimmetrie nelle forze muscolari e reazioni articolari tra emipelvi intatta ed operata. A partire da questi risultati il presente lavoro di tesi ha come obiettivo la costruzione di modelli personalizzati agli elementi finiti di pazienti con ricostruzione pelvica a seguito di chirurgia oncologica al fine di eseguire un’analisi strutturale biomeccanica nel lungo termine post-operatorio, con condizioni di carico che simulano delle attività motorie quotidiane. Nello specifico, sono stati realizzati i modelli (FE) di due pazienti utilizzando una procedura di modellazione solida e ripetibile, precedentemente sviluppata nel laboratorio. Per entrambi i casi clinici sono stati simulati gli istanti di picco della reazione all’anca, sia per il lato intatto che operato, durante la camminata e lo squat, utilizzando come input di carico i risultati dei modelli muscoloscheletrici personalizzati. In uno dei due casi clinici analizzati, si è evidenziata dalle immagini di tomografia computerizzata del follow-up la mobilizzazione di una vite pubica e si è deciso di testare sia la condizione ideale di corretta osteointegrazione che la mobilizzazione, al fine di valutare l’influenza di questa componente nella trasmissione complessiva dei carichi. I risultati sono stati analizzati, con lo scopo di verificare la sicurezza della protesi a lungo termine, identificando eventuali zone a rischio di frattura nella protesi e valutando possibili zone dell’osso a rischio di riassorbimento. I risultati ottenuti mostrano delle tensioni sulla protesi inferiori ai limiti a rottura per la lega di Titanio (circa 450 MPa) e delle deformazioni nell’osso che rimangono all’interno dei range fisiologici riportati in letteratura (± 3000 μstrain). L’analisi dei risultati ottenuti dai due casi clinici presi in esame, insieme agli ottimi risultati già evidenziati dal buon recupero funzionale dei pazienti, sembrano suggerire una buona stabilità della protesi a lungo termine.
Analisi agli elementi finiti di ricostruzioni pelviche custom-made a seguito di resezione oncologica: simulazione di tasks motori da gait-analysis con applicazione a casi clinici.
VISONÀ, GIULIA
2022/2023
Abstract
Today, for the treatment of primary pelvic tumours, amputation of the limb can be avoided thanks to customised prosthetic reconstruction of the hemipelvis. This type of implants, 3D-printed using the additive manufacturing technique, have proven their worth in terms of reducing surgery time and functional recovery of the patient. This thesis project is part of a larger study carried out at the Computational Bioengineering Laboratory of the Rizzoli Orthopaedic Institute (BO). The aim of the study is to evaluate the long- term biomechanical stability of customised pelvic reconstructions during daily activities, in terms of kinematics, kinetics, internal stresses and deformations. The first phase of the study involved the realisation and analysis of musculoskeletal models of a cohort of six patients, from gait-analysis data, obtaining good results from the point of view of functional recovery, although presenting some asymmetries in muscle forces and joint reactions between intact and operated hemipelvises. Starting from these results, the aim of this thesis work is to construct customised finite element models of patients with pelvic reconstruction following cancer surgery in order to perform a biomechanical structural analysis in the long-term post-operative period, with loading conditions simulating daily motor activities. Specifically, models (FE) of two patients were constructed using a robust and repeatable modelling procedure previously developed in the laboratory. For both clinical cases, peak hip reaction instants were simulated for both the intact and operated side during walking and squatting, using the results of the customised musculoskeletal models as load inputs. In one of the two clinical cases analysed, mobilisation of a pubic screw was evident from the follow-up computed tomography images and it was decided to test both the ideal condition of correct osseointegration and mobilisation in order to assess the influence of this component in the overall load transmission. The results were analysed with the aim of verifying the long-term safety of the prosthesis, identifying possible fracture risk zones in the prosthesis and assessing possible areas of the bone at risk of resorption. The results obtained show stresses on the prosthesis below the fracture limits for Titanium alloy (approximately 450 MPa) and deformations in the bone that remain within the physiological ranges reported in the literature (± 3000 μstrain). The analysis of the results obtained from the two clinical cases examined, together with the excellent results already highlighted by the good functional recovery of the patients, seem to suggest a good long-term stability of the prosthesis.File | Dimensione | Formato | |
---|---|---|---|
Visonà_Giulia.pdf
accesso aperto
Dimensione
12.11 MB
Formato
Adobe PDF
|
12.11 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/43349