Large-Eddy Simulations (LES) are one of the most promising methodologies to simulate turbulent flows due to their advantages in terms of accuracy and computational cost. However, the original LES model, introduced by Smagorinsky in 1960, has difficulties in emulating the flow behavior when dealing with complex geometries and near the walls. Moreover, when the wall resolution is not sufficient to resolve the boundary layer, a wall treatment is necessary. In this frame, the present work aims to implement a methodology based on wall-modelled LES and Immersed Boundary Method (IBM) as a mean to approach the fluid-structure interaction for complex geometries. A new wall-model approach based on the imposition of an augmented viscosity near the wall is proposed and the Wall-Adapting Local Eddy viscosity (WALE) model is considered. The methods named before are discussed in detail, and validation is provided. In the validation process, the simulations have been carried out in a channel with a rectangular section for different Reynolds numbers. The results obtained from coupling wall-modelled LES and IBM have been compared with theoretical expectations.
Le Simulazioni alle Grandi Scale (LES) sono una delle metodologie più promettenti per simulare flussi turbolenti, grazie ai loro vantaggi in termini di accuratezza e costo computazionale. Tuttavia, il modello LES originale, introdotto da Smagorinsky nel 1960, ha difficoltà ad emulare il comportamento del flusso quando si tratta con geometrie complesse e in prossimità delle pareti. Inoltre, quando la risoluzione a parete non è sufficiente per risolvere lo strato limite, è necessario un trattamento della parete. In questo contesto, il presente lavoro si propone di implementare una metodologia basata su LES modellato a parete e Immersed Boundary Method (IBM) come mezzo per affrontare l'interazione fluido-struttura per geometrie complesse. Viene proposto un nuovo approccio al modello di parete basato sull'imposizione di una viscosità aumentata vicino alla parete e viene preso in considerazione il modello di viscosità Wall-Adapting Local Eddy (WALE). I metodi nominati prima sono discussi in dettaglio e vengono poi convalidati. Nel processo di validazione, le simulazioni sono state effettuate in un canale a sezione rettangolare per diversi numeri di Reynolds. I risultati ottenuti dall'accoppiamento di LES e IBM modellati a parete sono stati confrontati con le aspettative teoriche.
Implementation of a Wall Model and Immersed Boundary Method for the Large Eddy Simulations of turbulent channel flows
BENETTI, LAURA
2022/2023
Abstract
Large-Eddy Simulations (LES) are one of the most promising methodologies to simulate turbulent flows due to their advantages in terms of accuracy and computational cost. However, the original LES model, introduced by Smagorinsky in 1960, has difficulties in emulating the flow behavior when dealing with complex geometries and near the walls. Moreover, when the wall resolution is not sufficient to resolve the boundary layer, a wall treatment is necessary. In this frame, the present work aims to implement a methodology based on wall-modelled LES and Immersed Boundary Method (IBM) as a mean to approach the fluid-structure interaction for complex geometries. A new wall-model approach based on the imposition of an augmented viscosity near the wall is proposed and the Wall-Adapting Local Eddy viscosity (WALE) model is considered. The methods named before are discussed in detail, and validation is provided. In the validation process, the simulations have been carried out in a channel with a rectangular section for different Reynolds numbers. The results obtained from coupling wall-modelled LES and IBM have been compared with theoretical expectations.File | Dimensione | Formato | |
---|---|---|---|
Benetti_Laura.pdf
accesso riservato
Dimensione
7.22 MB
Formato
Adobe PDF
|
7.22 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/43461