Nowadays, arylthiophenes are widely used as organic electronic materials and in the pharmaceutical field. These compounds are prepared by using traditional cross-coupling reactions, such as Suzuki, Stille or Negishi. These reactions require organometallic substrates leading, at the end of the process, to considerable amounts of stoichiometric waste. In the last years, C-H functionalisation has emerged as a greener synthetic route, which limits the synthetic steps and usage of toxic metal reagents. However, large-scale applications still face crucial issues like the high catalyst loading, the harsh reaction conditions, and the consequent safety. To overcome these limitations, flow chemistry is a strategy to improve a reaction efficiency by allowing a better control on the reaction parameters, a more efficient reagents contact in multi-phase transformation and an easier scale-up compared to traditional batch reactions. In this work, we investigated the direct arylation of thiophenes with aryl bromides, catalysed by a palladium catalyst, using a flow approach. Reactions were conducted in a packed-bed reactor, filled with potassium carbonate. By employing an automated flow system, several aryl bromides and thiophenes were tested. This methodology was suitable for a gram-scale synthesis with yields up to 80% in 30 minutes residence time. Moreover, we found that the reaction mixture at the outlet of the flow apparatus can be directly involved in a subsequent step for the synthesis of thiophene-based photosensitizer.
Oggigiorno, gli ariltiofeni sono ampiamente utilizzati come materiali elettronici organici e nell’ambito della farmaceutica. Questi composti sono preparati attraverso reazioni di cross-coupling, come quelle di Suzuki, Stille or Negishi. Queste reazioni richiedono reagenti organometallici portando, alla fine del processo, a importanti quantità stechiometriche di scarti. Negli ultimi anni, la funzionalizzazione di legami C-H si è distinta come via sintetica più “green”, limitando i passaggi sintetici e l’uso di reagenti metallici tossici. Nonostante ciò, le applicazioni su larga scala incontrano ancora diversi problemi come la quantità di catalizzatore necessaria, elevate temperature e tempi di reazione e i relativi problemi di sicurezza. Per superare queste limitazioni, la chimica in flusso è una delle strategie per migliorare l’efficienza di una reazione, consentendo un miglior controllo sui parametri di reazione, un più efficiente contatto nelle trasformazioni in ambiente multifasico e un più facile processo di scale up rispetto a reazioni svolte in reattori batch. In questo lavoro, abbiamo studiato la reazione di arilazione diretta di tiofeni con aril bromuri, promossa da un catalizzatore di palladio, utilizzando un approccio in flusso. Le reazioni sono state condotte in un reattore a letto fisso, riempito di carbonato di potassio. Utilizzando un sistema in flusso automatizzato, aril bromuri e tiofeni diversamente sostituiti sono stati provati nella reazione di arilazione. La metodologia è stata adattata per una sintesi dell’ordine dei grammi con rese fino all’80% con 30 minuti di tempo di residenza. In aggiunta, abbiamo posto le basi per una sintesi multistadio coinvolgendo direttamente la miscela di reazione all’uscita dell’apparato in flusso in un passaggio successivo per la sintesi di un foto-sensibilizzatore a base di tiofeni.
Application of Flow Chemistry to the Direct Arylation of Thiophenes
PETRONILLI, ALESSANDRO
2022/2023
Abstract
Nowadays, arylthiophenes are widely used as organic electronic materials and in the pharmaceutical field. These compounds are prepared by using traditional cross-coupling reactions, such as Suzuki, Stille or Negishi. These reactions require organometallic substrates leading, at the end of the process, to considerable amounts of stoichiometric waste. In the last years, C-H functionalisation has emerged as a greener synthetic route, which limits the synthetic steps and usage of toxic metal reagents. However, large-scale applications still face crucial issues like the high catalyst loading, the harsh reaction conditions, and the consequent safety. To overcome these limitations, flow chemistry is a strategy to improve a reaction efficiency by allowing a better control on the reaction parameters, a more efficient reagents contact in multi-phase transformation and an easier scale-up compared to traditional batch reactions. In this work, we investigated the direct arylation of thiophenes with aryl bromides, catalysed by a palladium catalyst, using a flow approach. Reactions were conducted in a packed-bed reactor, filled with potassium carbonate. By employing an automated flow system, several aryl bromides and thiophenes were tested. This methodology was suitable for a gram-scale synthesis with yields up to 80% in 30 minutes residence time. Moreover, we found that the reaction mixture at the outlet of the flow apparatus can be directly involved in a subsequent step for the synthesis of thiophene-based photosensitizer.File | Dimensione | Formato | |
---|---|---|---|
Petronilli_Alessandro.pdf
accesso riservato
Dimensione
6.33 MB
Formato
Adobe PDF
|
6.33 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/43750