The amount of plastics released into the environment has been increasing dramatically and those derived from physical and chemical degradation of plastics resulting in the production of even micrometer-sized plastic particles are the most risky for health and the environment. Considerable efforts have been made to identify and quantify microplastics in ecosystems. Millimeter-sized plastic particles can be monitored either visually or using spectroscopic tools such as Fourier-transform infrared spectroscopy, Raman spectroscopy, optical microscopy, and scanning electron microscopy combined with energy-dispersive X- ray spectroscopy. These technologies have long been considered reliable methods for the identification of diverse plastic materials, but are not suitable for the quantification of concentrations in the environment nor adequate enough for micrometer sized plastics, especially if transparent and dispersed in water. This thesis project aims to study new approaches to overcome these limitations by using opto-microfluidics platforms and droplets generation containing micro plastics. The applicant will get in touch with the design, realization and optimization of light induced effects and electric field interactions induced in water droplets (with microplastics) generated in cross- and T-junctions, gaining knowledge and expertise in microfluidics and integrated optics and how to develop a new set-up for plastics detections. Sensing as well as to define new protocols for identifying, quantifying and sorting micro plastics will be treated in detail. Data analysis as well as experimental design approach will be implemented in order to complete the applicant knowhow together with tests and calibrations of real case studies to validate the system.

La quantità di plastica rilasciata nell'ambiente è aumentata notevolmente e quelle derivate dal degrado fisico e chimico della plastica con conseguente produzione di particelle di plastica anche di dimensioni micrometriche sono le più rischiose per la salute e l'ambiente. Sono stati compiuti notevoli sforzi per identificare e quantificare le microplastiche negli ecosistemi. Le particelle di plastica di dimensioni millimetriche possono essere monitorate visivamente o utilizzando strumenti spettroscopici come la spettroscopia infrarossa a trasformata di Fourier, la spettroscopia Raman, la microscopia ottica e la microscopia elettronica a scansione combinate con la spettroscopia a raggi X a dispersione di energia. Queste tecnologie sono state a lungo considerate metodi affidabili per l'identificazione di diversi materiali plastici, ma non sono adatte alla quantificazione delle concentrazioni nell'ambiente né sufficientemente adeguate per plastiche di dimensioni micrometriche, soprattutto se trasparenti e disperse in acqua. Questo progetto di tesi mira a studiare nuovi approcci per superare queste limitazioni utilizzando piattaforme di opto-microfluidica e generazione di goccioline contenenti microplastiche. Il candidato si metterà in contatto con la progettazione, realizzazione e ottimizzazione degli effetti indotti dalla luce e delle interazioni del campo elettrico indotte in gocce d'acqua (con microplastiche) generate in giunzioni incrociate e a T, acquisendo conoscenze ed esperienza in microfluidica e ottica integrata nonchè su come sviluppare un nuovo set-up per la rivelazione di materie plastiche. Verrà trattata in dettaglio la rivelazione nonché la definizione di nuovi protocolli per l'identificazione, la quantificazione e lo smistamento delle microplastiche. L'analisi dei dati e l'approccio alla progettazione sperimentale saranno implementati al fine di completare il know-how del candidato insieme a test e calibrazioni di casi studio reali per convalidare il sistema.

Droplet-based optofluidics sensing of micro plastics in aqueous solutions

PERFETTI, EMANUELE
2022/2023

Abstract

The amount of plastics released into the environment has been increasing dramatically and those derived from physical and chemical degradation of plastics resulting in the production of even micrometer-sized plastic particles are the most risky for health and the environment. Considerable efforts have been made to identify and quantify microplastics in ecosystems. Millimeter-sized plastic particles can be monitored either visually or using spectroscopic tools such as Fourier-transform infrared spectroscopy, Raman spectroscopy, optical microscopy, and scanning electron microscopy combined with energy-dispersive X- ray spectroscopy. These technologies have long been considered reliable methods for the identification of diverse plastic materials, but are not suitable for the quantification of concentrations in the environment nor adequate enough for micrometer sized plastics, especially if transparent and dispersed in water. This thesis project aims to study new approaches to overcome these limitations by using opto-microfluidics platforms and droplets generation containing micro plastics. The applicant will get in touch with the design, realization and optimization of light induced effects and electric field interactions induced in water droplets (with microplastics) generated in cross- and T-junctions, gaining knowledge and expertise in microfluidics and integrated optics and how to develop a new set-up for plastics detections. Sensing as well as to define new protocols for identifying, quantifying and sorting micro plastics will be treated in detail. Data analysis as well as experimental design approach will be implemented in order to complete the applicant knowhow together with tests and calibrations of real case studies to validate the system.
2022
Droplet-based optofluidics sensing of micro plastics in aqueous solutions
La quantità di plastica rilasciata nell'ambiente è aumentata notevolmente e quelle derivate dal degrado fisico e chimico della plastica con conseguente produzione di particelle di plastica anche di dimensioni micrometriche sono le più rischiose per la salute e l'ambiente. Sono stati compiuti notevoli sforzi per identificare e quantificare le microplastiche negli ecosistemi. Le particelle di plastica di dimensioni millimetriche possono essere monitorate visivamente o utilizzando strumenti spettroscopici come la spettroscopia infrarossa a trasformata di Fourier, la spettroscopia Raman, la microscopia ottica e la microscopia elettronica a scansione combinate con la spettroscopia a raggi X a dispersione di energia. Queste tecnologie sono state a lungo considerate metodi affidabili per l'identificazione di diversi materiali plastici, ma non sono adatte alla quantificazione delle concentrazioni nell'ambiente né sufficientemente adeguate per plastiche di dimensioni micrometriche, soprattutto se trasparenti e disperse in acqua. Questo progetto di tesi mira a studiare nuovi approcci per superare queste limitazioni utilizzando piattaforme di opto-microfluidica e generazione di goccioline contenenti microplastiche. Il candidato si metterà in contatto con la progettazione, realizzazione e ottimizzazione degli effetti indotti dalla luce e delle interazioni del campo elettrico indotte in gocce d'acqua (con microplastiche) generate in giunzioni incrociate e a T, acquisendo conoscenze ed esperienza in microfluidica e ottica integrata nonchè su come sviluppare un nuovo set-up per la rivelazione di materie plastiche. Verrà trattata in dettaglio la rivelazione nonché la definizione di nuovi protocolli per l'identificazione, la quantificazione e lo smistamento delle microplastiche. L'analisi dei dati e l'approccio alla progettazione sperimentale saranno implementati al fine di completare il know-how del candidato insieme a test e calibrazioni di casi studio reali per convalidare il sistema.
Optofluidic
Microplastics
Microfluidics
Lithium Niobate
Optical sensor
File in questo prodotto:
File Dimensione Formato  
Perfetti_Emanuele.pdf

accesso aperto

Dimensione 27.43 MB
Formato Adobe PDF
27.43 MB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/45508