For decades, scientists and engineers have been striving to develop materials that are both light-weight and strong, stable, and resilient, with applications ranging from aerospace to the biomedical industry. While conventional materials have been able to deliver the necessary mechanical properties for many applications, they are often associated with a trade-off between weight, stiffness, and strength. In order to address this issue, cellular solids have emerged as a promising solution, which allocate material efficiently along spe- cific directions to reduce the weight-stiffness/strength trade-off. With recent advances in additive manufacturing, it is now possible to create geometrically complex architected materials with unprecedented mechanical properties and functions. This has rapidly expanded the design space by combining different base materials and architectures. However, exploring and exploiting these large and complex design spaces quickly becomes unfeasible with analytical modeling or brute-force algorithms, and com- putationally intractable with traditional physics-based numerical simulations. In response to these challenges, this thesis aims to combine machine learning (ML) with numerical simulations to develop computational frameworks that can understand and dis- cover novel high-performing architected materials. In particular, the goal is to apply Deep Learning algorithms to predict the stiffness properties of an open-cell lattice structure. This approach is highly innovative, as it enables the development of highly efficient and accurate prediction models that can guide the design of materials with desired properties. By leveraging the power of ML algorithms, this approach can potentially save significant amounts of time and resources that would otherwise be required to conduct traditional numerical simulations. Moreover, the approach has the potential to lead to the discovery of novel architected materials with unprecedented mechanical properties, which can have transformative impacts on a wide range of industries.
Per decenni, scienziati e ingegneri hanno cercato di sviluppare materiali leggeri, forti, stabili e resistenti, con applicazioni che vanno dal settore aerospaziale a quello biomedico. Sebbene i materiali convenzionali siano stati in grado di fornire le proprieta` meccaniche necessarie per molte applicazioni, sono spesso associati a un compromesso tra peso, rigidita` e resistenza. Per affrontare questo problema, sono emersi come soluzione promettente i solidi cellulari, che allocano il materiale in modo efficiente lungo direzioni specifiche per ridurre il compromesso tra peso, rigidita` e resistenza. Grazie ai recenti progressi nell’additive manufacturing, `e ora possibile creare materi- ali architetturali geometricamente complessi con proprieta` meccaniche e funzioni senza precedenti. Cio` ha rapidamente ampliato lo spazio di progettazione combinando diversi materiali e architetture di base. Tuttavia, l’esplorazione e lo sfruttamento di questi spazi di progettazione ampi e complessi diventa rapidamente impraticabile con la modellazione analitica o gli algoritmi brute-force e computazionalmente intrattabile con le tradizionali simulazioni numeriche basate sulla fisica. In risposta a queste sfide, questa tesi mira a combinare l’apprendimento automatico (ML) con le simulazioni numeriche per sviluppare framework computazionali in grado di comprendere e scoprire nuovi materiali architetturali ad alte prestazioni. In parti- colare, l’obiettivo `e applicare algoritmi di Deep Learning per prevedere le proprieta` di rigidita` di una struttura reticolare a celle aperte. Questo approccio `e altamente innovativo, in quanto consente lo sviluppo di modelli di previsione altamente efficienti e accurati che possono guidare la progettazione di materiali con le proprieta` desiderate. Sfruttando la potenza degli algoritmi di ML, questo approccio puo` potenzialmente far risparmiare notevoli quantit`a di tempo e risorse che altrimenti sarebbero necessarie per condurre simulazioni numeriche tradizionali. Inoltre, l’approccio ha il potenziale per portare alla scoperta di nuovi materiali architetturali con proprieta` meccaniche senza precedenti, che possono avere un impatto trasformativo su un’ampia gamma di settori industriali.
Machine learning-guided design of truss lattice materials
TESSARI, MATTIA
2022/2023
Abstract
For decades, scientists and engineers have been striving to develop materials that are both light-weight and strong, stable, and resilient, with applications ranging from aerospace to the biomedical industry. While conventional materials have been able to deliver the necessary mechanical properties for many applications, they are often associated with a trade-off between weight, stiffness, and strength. In order to address this issue, cellular solids have emerged as a promising solution, which allocate material efficiently along spe- cific directions to reduce the weight-stiffness/strength trade-off. With recent advances in additive manufacturing, it is now possible to create geometrically complex architected materials with unprecedented mechanical properties and functions. This has rapidly expanded the design space by combining different base materials and architectures. However, exploring and exploiting these large and complex design spaces quickly becomes unfeasible with analytical modeling or brute-force algorithms, and com- putationally intractable with traditional physics-based numerical simulations. In response to these challenges, this thesis aims to combine machine learning (ML) with numerical simulations to develop computational frameworks that can understand and dis- cover novel high-performing architected materials. In particular, the goal is to apply Deep Learning algorithms to predict the stiffness properties of an open-cell lattice structure. This approach is highly innovative, as it enables the development of highly efficient and accurate prediction models that can guide the design of materials with desired properties. By leveraging the power of ML algorithms, this approach can potentially save significant amounts of time and resources that would otherwise be required to conduct traditional numerical simulations. Moreover, the approach has the potential to lead to the discovery of novel architected materials with unprecedented mechanical properties, which can have transformative impacts on a wide range of industries.File | Dimensione | Formato | |
---|---|---|---|
Tessari_Mattia.pdf
accesso riservato
Dimensione
11.66 MB
Formato
Adobe PDF
|
11.66 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/45823