Topology optimization is a process that optimizes material distribution in a part to be designed, resulting in complex geometries. Additive manufacturing technologies, based on building a part layer upon layer directly from the 3D model, allow the production of such complex shapes. This thesis focuses on topologically optimized design approach for additive manufacturing with a case study on design of a washing machine door hinge, proposing a simplified approach using the finite element method to estimate the fatigue life of an additively manufactured short fiber reinforced component. The first two chapters serve as a general introduction to the additive manufacturing technologies that will be used, with particular attention to the Fused Deposition Modeling process using short fibre reinforced polymer composites, and to provide a theoretical background on the process of topology optimization, a procedure is shown to implement topology optimization in the software ANSYS Workbench 2022 R2. Chapter three contains information about the materials and manufacturing process used, the hinge model provided by Electrolux, the experimental setup used to perform static test on standard specimens, fatigue test on the hinge component, and strain measures using strain gages. Then the structural optimization process is illustrated, with particular attention to the use of parametric topology optimization and to post-processing of the results, in the form of smoothing of the optimized models. Then a procedure to determine the optimal printing angle is created. Chapter four contains the models results of topology optimization, showing two models that showed the more significant improvements in terms of specific stiffness. Chapter five provides the results of the experimental analysis of the strains of an optimized model and the comparison with the FEM model. Finally, chapter six contains all the results from the static and cyclic experimental tests, with particular attention to experimental validation of the approach presented to estimate fatigue life strength of a 3D printed component.
Ottimizzazione topologica e ricostruzione del modello CAD di un componente mediante l'utilizzo di software commerciali. Caratterizzazione meccanica di provini in composito rinforzato fibra corta prodotto mediante additive manufacturing. Studio della fattibilità realizzativa e produzione del componente ottimizzato. Allestimento banco prova con attuatori servoidraulici per prove statiche e a fatica dei componenti prodotti mediante processo Additive Manufacturing. I primi due capitoli hanno lo scopo di fornire una presentazione generale sulle tecnologie di additive manufacturing disponibili, con particolare attenzione al processo di Fused Deposition Modeling utilizzato con compositi con matrici polimeriche e rinforzo fibra corta; e u di presentare uno sfondo teorico sull’ ottimizzazione topologica. È illustrato in particolare l’utilizzo del software ANSYS Workbench 2022 per effettuare ottimizzazione topologica. Il capitolo tre contiene informazioni sui materiali in esame e sui processi utilizzati per la loro produzione, sul modello di cerniera fornito da Electrolux, con le rispettive condizioni di carico, e informazioni riguardo il modo in cui sono state effettuate le prove sperimentali. Entra anche nel dettaglio sul processo utilizzato per effettuare ottimizzazioni topologiche e post-processing dei risultati. Infine sono presentati il processo di misurazione delle deformazioni tramite estensimetri e un metodo per la determinazione della direzione ottimale di stampa 3D per massimizzare la resistenza del componente stampato. Il capitolo quattro riporta i modelli ottenuti come risultati delle ottimizzazioni topologiche, e il confronto in termini di massa, spostamenti e rigidezza specifica con il componente iniziale fornito da Electrolux Il capitolo cinque mostra i risultati ottenuti dal confronto tra le deformazioni ottenute con prove sperimentali e le deformazioni del componente stimate con un modello agli elementi finiti. Il capitolo sei infine riporta i risultati delle prove sperimentali statiche e di fatica effettuate sui provini prodotti in PPGF30, presentando un approccio semplificato basto sull’utilizzo di modelli FEM e per stimare la vita a fatica del componente.
Ottimizzazione strutturale e validazione sperimentale di un componente in composito a fibra discontinua prodotto mediante Additive Manufacturing
TONUS, ANDREA
2022/2023
Abstract
Topology optimization is a process that optimizes material distribution in a part to be designed, resulting in complex geometries. Additive manufacturing technologies, based on building a part layer upon layer directly from the 3D model, allow the production of such complex shapes. This thesis focuses on topologically optimized design approach for additive manufacturing with a case study on design of a washing machine door hinge, proposing a simplified approach using the finite element method to estimate the fatigue life of an additively manufactured short fiber reinforced component. The first two chapters serve as a general introduction to the additive manufacturing technologies that will be used, with particular attention to the Fused Deposition Modeling process using short fibre reinforced polymer composites, and to provide a theoretical background on the process of topology optimization, a procedure is shown to implement topology optimization in the software ANSYS Workbench 2022 R2. Chapter three contains information about the materials and manufacturing process used, the hinge model provided by Electrolux, the experimental setup used to perform static test on standard specimens, fatigue test on the hinge component, and strain measures using strain gages. Then the structural optimization process is illustrated, with particular attention to the use of parametric topology optimization and to post-processing of the results, in the form of smoothing of the optimized models. Then a procedure to determine the optimal printing angle is created. Chapter four contains the models results of topology optimization, showing two models that showed the more significant improvements in terms of specific stiffness. Chapter five provides the results of the experimental analysis of the strains of an optimized model and the comparison with the FEM model. Finally, chapter six contains all the results from the static and cyclic experimental tests, with particular attention to experimental validation of the approach presented to estimate fatigue life strength of a 3D printed component.File | Dimensione | Formato | |
---|---|---|---|
Tonus_Andrea.pdf
accesso riservato
Dimensione
10.59 MB
Formato
Adobe PDF
|
10.59 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/45914