The climate-environmental crisis the modern world is facing is mainly caused by an inefficient energy system based on fossil fuels. The decarbonization targets of 2050 call for early action, but it is crucial to avoid investing time and resources in the wrong direction. In this context, many research groups agree on the importance of hydrogen as a possible alternative energy source. In the use of hydrogen, especially in commercial fuel cell applications, hydrogen purity is crucial, as contaminants can negatively affect the efficiency and lifetime of the electrochemical device. The aim of this study is to contribute to the deployment of hydrogen as an energy carrier through a techno-economic analysis of available purification technologies that meet the purity requirements of ISO 14687:2019. Various purification technologies for hydrogen-containing gas mixtures are considered, including pressure swing adsorption systems, membranes, and metal hydrides. The techno-economic analysis is conducted on two specific study cases. The deblending of hydrogen from the natural gas transmission grid represents the case study of the purification of a hydrogen-lean gas mixture. In this context, with a stream containing 5% vol. of H2 in the natural gas, metal hydride proves to be the most economical solution, with a final separation cost in the range of 1.1-1.7 €/kgH2, and a specific energy consumption of 6.1 kWh/kgH2, including hydrogen compression at high pressure and injecting the natural gas into the distribution grid. The second case study concerns the purification of a syngas with a high hydrogen content, obtained by a biomass gasification process. In this case, pressure swing adsorption technique remains the leading technology for this type of application. The different purification technologies examined show variable results depending on the use scenario analyzed and the relevant boundary conditions. Finally, a dynamic model for solid-state purification with doped LaNi5 metal hydride is presented, studying the kinetics of adsorption and the thermal management. The results obtained through the model developed in the Dymola simulation environment confirm the feasibility of purifying mixture H2:CH4 5:95% vol., achieving a high hydrogen purity (99.97%) and a hydrogen recovery close to 80%.

La crisi climatica-ambientale che il mondo moderno sta affrontando è principalmente causata da un sistema energetico inefficiente basato sui combustibili fossili. Gli obiettivi di decarbonizzazione al 2050 richiedono un intervento tempestivo, ma è fondamentale evitare di investire tempo e risorse nella direzione sbagliata. In questo contesto, numerosi gruppi di ricerca concordano sull'importanza dell'idrogeno come possibile fonte di energia alternativa. Nell'utilizzo dell'idrogeno, soprattutto nelle applicazioni commerciali delle celle a combustibile, la purezza dell'idrogeno è cruciale, poiché i contaminanti possono influire negativamente sull'efficienza e sulla durata del dispositivo elettrochimico. Lo scopo di questo studio è contribuire alla diffusione dell'idrogeno come vettore energetico attraverso un'analisi tecnico-economica delle tecnologie di purificazione disponibili che rispettino i requisiti di purezza richiesti dalla norma ISO 14687:2019. Sono state prese in considerazione diverse tecnologie di purificazione per miscele di gas contenenti idrogeno, tra cui i sistemi di adsorbimento a pressione oscillante, membrane e metalli idruri. L'analisi tecno-economica è stata condotta su due casi studio specifici. La separazione di idrogeno dalla rete di trasmissione del gas naturale rappresenta il caso studio di purificazione di una miscela gassosa povera di idrogeno. In questo contesto, con un flusso contenente il 5% vol. di H2 nel gas naturale, il metallo idruro dimostra di essere la soluzione più economica, con un costo finale di separazione nell’intervallo 1.1-1.7 €/kgH2, ed un consumo specifico di energia di 6.1 kWh/kgH2, comprensivi della compressione dell’idrogeno ad alta pressione e dell’immissione del gas naturale nella rete di distribuzione. Il secondo caso studio riguarda la purificazione di un syngas ad alto contenuto di idrogeno, ottenuto tramite processo di gassificazione della biomassa. In questo caso, la tecnica dell’adsorbimento a pressione oscillante rimane la tecnologia principe per questo tipo di applicazioni. Le diverse tecnologie di purificazione prese in esame evidenziano risultati variabili in base allo scenario d'uso analizzato e alle relative condizioni al contorno. Infine, viene presentato un modello dinamico per la purificazione allo stato solido con idruro metallico LaNi5 dopato, studiando la cinetica di assorbimento e la gestione dello scambio termico. I risultati ottenuti mediante il modello sviluppato in ambiente di simulazione Dymola confermano la fattibilità di purificare una miscela H2:CH4 5:95% vol., ottenendo un’elevata purezza dell'idrogeno (99.97%) e un recupero dell’idrogeno prossimo all’80%.

Techno-economic analysis of hydrogen separation and purification technologies for fuel cell application

RIZZO, MICHAEL
2022/2023

Abstract

The climate-environmental crisis the modern world is facing is mainly caused by an inefficient energy system based on fossil fuels. The decarbonization targets of 2050 call for early action, but it is crucial to avoid investing time and resources in the wrong direction. In this context, many research groups agree on the importance of hydrogen as a possible alternative energy source. In the use of hydrogen, especially in commercial fuel cell applications, hydrogen purity is crucial, as contaminants can negatively affect the efficiency and lifetime of the electrochemical device. The aim of this study is to contribute to the deployment of hydrogen as an energy carrier through a techno-economic analysis of available purification technologies that meet the purity requirements of ISO 14687:2019. Various purification technologies for hydrogen-containing gas mixtures are considered, including pressure swing adsorption systems, membranes, and metal hydrides. The techno-economic analysis is conducted on two specific study cases. The deblending of hydrogen from the natural gas transmission grid represents the case study of the purification of a hydrogen-lean gas mixture. In this context, with a stream containing 5% vol. of H2 in the natural gas, metal hydride proves to be the most economical solution, with a final separation cost in the range of 1.1-1.7 €/kgH2, and a specific energy consumption of 6.1 kWh/kgH2, including hydrogen compression at high pressure and injecting the natural gas into the distribution grid. The second case study concerns the purification of a syngas with a high hydrogen content, obtained by a biomass gasification process. In this case, pressure swing adsorption technique remains the leading technology for this type of application. The different purification technologies examined show variable results depending on the use scenario analyzed and the relevant boundary conditions. Finally, a dynamic model for solid-state purification with doped LaNi5 metal hydride is presented, studying the kinetics of adsorption and the thermal management. The results obtained through the model developed in the Dymola simulation environment confirm the feasibility of purifying mixture H2:CH4 5:95% vol., achieving a high hydrogen purity (99.97%) and a hydrogen recovery close to 80%.
2022
Techno-economic analysis of hydrogen separation and purification technologies for fuel cell application
La crisi climatica-ambientale che il mondo moderno sta affrontando è principalmente causata da un sistema energetico inefficiente basato sui combustibili fossili. Gli obiettivi di decarbonizzazione al 2050 richiedono un intervento tempestivo, ma è fondamentale evitare di investire tempo e risorse nella direzione sbagliata. In questo contesto, numerosi gruppi di ricerca concordano sull'importanza dell'idrogeno come possibile fonte di energia alternativa. Nell'utilizzo dell'idrogeno, soprattutto nelle applicazioni commerciali delle celle a combustibile, la purezza dell'idrogeno è cruciale, poiché i contaminanti possono influire negativamente sull'efficienza e sulla durata del dispositivo elettrochimico. Lo scopo di questo studio è contribuire alla diffusione dell'idrogeno come vettore energetico attraverso un'analisi tecnico-economica delle tecnologie di purificazione disponibili che rispettino i requisiti di purezza richiesti dalla norma ISO 14687:2019. Sono state prese in considerazione diverse tecnologie di purificazione per miscele di gas contenenti idrogeno, tra cui i sistemi di adsorbimento a pressione oscillante, membrane e metalli idruri. L'analisi tecno-economica è stata condotta su due casi studio specifici. La separazione di idrogeno dalla rete di trasmissione del gas naturale rappresenta il caso studio di purificazione di una miscela gassosa povera di idrogeno. In questo contesto, con un flusso contenente il 5% vol. di H2 nel gas naturale, il metallo idruro dimostra di essere la soluzione più economica, con un costo finale di separazione nell’intervallo 1.1-1.7 €/kgH2, ed un consumo specifico di energia di 6.1 kWh/kgH2, comprensivi della compressione dell’idrogeno ad alta pressione e dell’immissione del gas naturale nella rete di distribuzione. Il secondo caso studio riguarda la purificazione di un syngas ad alto contenuto di idrogeno, ottenuto tramite processo di gassificazione della biomassa. In questo caso, la tecnica dell’adsorbimento a pressione oscillante rimane la tecnologia principe per questo tipo di applicazioni. Le diverse tecnologie di purificazione prese in esame evidenziano risultati variabili in base allo scenario d'uso analizzato e alle relative condizioni al contorno. Infine, viene presentato un modello dinamico per la purificazione allo stato solido con idruro metallico LaNi5 dopato, studiando la cinetica di assorbimento e la gestione dello scambio termico. I risultati ottenuti mediante il modello sviluppato in ambiente di simulazione Dymola confermano la fattibilità di purificare una miscela H2:CH4 5:95% vol., ottenendo un’elevata purezza dell'idrogeno (99.97%) e un recupero dell’idrogeno prossimo all’80%.
Hydrogen fuel cell
Purification
PSA
Membrane
Metal hydride
File in questo prodotto:
File Dimensione Formato  
Rizzo_Michael.pdf

embargo fino al 03/07/2024

Dimensione 4.69 MB
Formato Adobe PDF
4.69 MB Adobe PDF

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/47253