The current work aims at exploring a potential and extremely efficient approach for bone tissue engineering utilizing phosphate bioceramic scaffolds that contain silicates. These scaffolds offer the proper balance between mechanical properties, biodegradability, and biocompatibility as well as manufacturing versatility. In particular, silicate-bonded phosphate scaffolds have been successfully 3D-printed by VAT Photopolymerisation, starting from a silicone polymer and fillers comprising phosphate powders, β-tri-Calcium phosphate and hydroxyapatite, or phosphate precursors such as phosphorus pentoxide or phosphoric acid. The scaffolds, fabricated with Gyroid geometries, were heat treated at 800-1100 °C, in static air or a nitrogen atmosphere. The thermal treatment and sintering temperature were adopted for the conversion of the silicone, by thermal decomposition, into amorphous silica which reacted with the fillers, developing the described bioactive silicate ceramics that bonded the phosphate phases. The obtained silicate-bonded phosphate scaffolds featured high open porosity and appropriate compressive strength. Besides employing a simple manufacturing process, the fabricated scaffolds exhibited an adequate strength-to-density ratio which makes them promising candidates for bone tissue applications.
Il presente lavoro mira a esplorare un approccio efficiente per l'ingegneria del tessuto osseo utilizzando scaffold bioceramici fosfatici contenenti silicati. Questi scaffold offrono il giusto equilibrio tra proprietà meccaniche, biodegradabilità e biocompatibilità, nonché versatilità di produzione. In particolare, gli scaffold di fosfato legati ai silicati sono stati stampati con successo in 3D mediante fotopolimerizzazione VAT, partendo da un polimero siliconico e da polveri di fosfato, β-tri-fosfato di calcio e idrossiapatite, o precursori di fosfato come pentossido di fosforo o acido fosforico. Gli scaffold, fabbricati con la geometria di giroide, sono stati trattati termicamente a 800-1100 °C, in aria statica o in atmosfera di azoto. Il trattamento termico e la temperatura di sinterizzazione sono stati adottati per la conversione del silicone, tramite decomposizione termica, in silice amorfa che ha reagito con le cariche, sviluppando la descritta ceramica silicatica bioattiva che ha legato le fasi fosfatiche. Gli scaffold di fosfato legati a silicati ottenuti presentano un'elevata porosità aperta e un'adeguata resistenza alla compressione. Oltre a impiegare un processo di fabbricazione semplice, gli scaffold fabbricati hanno mostrato un adeguato rapporto resistenza/densità, che li rende promettenti candidati per applicazioni nel tessuto osseo.
Advanced additive manufacturing of silicate-bonded phosphate bioceramics for bone tissue engineering
ZILIO, ANNALAURA
2022/2023
Abstract
The current work aims at exploring a potential and extremely efficient approach for bone tissue engineering utilizing phosphate bioceramic scaffolds that contain silicates. These scaffolds offer the proper balance between mechanical properties, biodegradability, and biocompatibility as well as manufacturing versatility. In particular, silicate-bonded phosphate scaffolds have been successfully 3D-printed by VAT Photopolymerisation, starting from a silicone polymer and fillers comprising phosphate powders, β-tri-Calcium phosphate and hydroxyapatite, or phosphate precursors such as phosphorus pentoxide or phosphoric acid. The scaffolds, fabricated with Gyroid geometries, were heat treated at 800-1100 °C, in static air or a nitrogen atmosphere. The thermal treatment and sintering temperature were adopted for the conversion of the silicone, by thermal decomposition, into amorphous silica which reacted with the fillers, developing the described bioactive silicate ceramics that bonded the phosphate phases. The obtained silicate-bonded phosphate scaffolds featured high open porosity and appropriate compressive strength. Besides employing a simple manufacturing process, the fabricated scaffolds exhibited an adequate strength-to-density ratio which makes them promising candidates for bone tissue applications.File | Dimensione | Formato | |
---|---|---|---|
Zilio_Annalaura.pdf
embargo fino al 09/07/2026
Dimensione
2.61 MB
Formato
Adobe PDF
|
2.61 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/47661