A model that combines econometric ARMA model with new machine learning techniques will be developed to build an efficient portfolio, composed of Italian FTSE-MIB stocks. The goal of this portfolio is to over-perform a benchmark portfolio obtained throw traditional Markowitz optimisation.
A model that combines econometric ARMA model with new machine learning techniques will be developed to build an efficient portfolio, composed of Italian FTSE-MIB stocks. The goal of this portfolio is to over-perform a benchmark portfolio obtained throw traditional Markowitz optimisation.
Machine Learning and Portfolio Optimization: an application to Italian FTSE-MIB Stocks
MASIERO, ANDREA
2022/2023
Abstract
A model that combines econometric ARMA model with new machine learning techniques will be developed to build an efficient portfolio, composed of Italian FTSE-MIB stocks. The goal of this portfolio is to over-perform a benchmark portfolio obtained throw traditional Markowitz optimisation.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Masiero_Andrea.pdf
accesso aperto
Dimensione
5.77 MB
Formato
Adobe PDF
|
5.77 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/20.500.12608/48242