A model that combines econometric ARMA model with new machine learning techniques will be developed to build an efficient portfolio, composed of Italian FTSE-MIB stocks. The goal of this portfolio is to over-perform a benchmark portfolio obtained throw traditional Markowitz optimisation.

A model that combines econometric ARMA model with new machine learning techniques will be developed to build an efficient portfolio, composed of Italian FTSE-MIB stocks. The goal of this portfolio is to over-perform a benchmark portfolio obtained throw traditional Markowitz optimisation.

Machine Learning and Portfolio Optimization: an application to Italian FTSE-MIB Stocks

MASIERO, ANDREA
2022/2023

Abstract

A model that combines econometric ARMA model with new machine learning techniques will be developed to build an efficient portfolio, composed of Italian FTSE-MIB stocks. The goal of this portfolio is to over-perform a benchmark portfolio obtained throw traditional Markowitz optimisation.
2022
Machine Learning and Portfolio Optimization: an application to Italian FTSE-MIB Stocks
A model that combines econometric ARMA model with new machine learning techniques will be developed to build an efficient portfolio, composed of Italian FTSE-MIB stocks. The goal of this portfolio is to over-perform a benchmark portfolio obtained throw traditional Markowitz optimisation.
Portfolio
Machine learning
Risk-return
File in questo prodotto:
File Dimensione Formato  
Masiero_Andrea.pdf

accesso aperto

Dimensione 5.77 MB
Formato Adobe PDF
5.77 MB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/48242