This thesis deals with an experimental study, carried out with a two-dimensional physical model, of a floating breakwater for the defense of the shoreline of Piazza San Marco in Venice. The main focus is the determination of a projectual configuration that provides the best performance in terms of transmission coefficient, in order to limit the phenomena of shore flooding and attenuate the wave motion incidental to the quay, taking into account the contextual operational limitations. Floating breakwaters represent a less conventional set of defense works, typically used in shallow water and mild sea conditions, with modest waves in the range of 1.50-2.00 meters. Floating breakwaters are modular structures with great flexibility of use, affordable and with limited sensitivity from the seabed; their low elevation above the sea level ensures both a lower visual impact and a reduced environmental impact by indeed allowing the exchange of water and the circulation of fish fauna. The type of breakwater considered in the study is π-type, a box structure with vertical extensions facing the seabed. The physical model was built in a 1:8 undistorted geometric scale, inside the wave channel of the Laboratory of Maritime Construction of the ICEA Department of the University of Padua. Eight resistive probes, 4 opposite and 4 behind the breakwater, were placed in the channel to measure the incidental wave and the wave transmitted beyond the structure. The stresses on the pillars supporting the breakwaters, as the waves passed, were monitored through 2 strain gauge cells while a videocamera allowed the recording of the movements undergone by the model during the entire duration of the wave phenomenon. The dimensions of the wavebreaker, properly anchored to the seabed by means of bushings inserted on piles, all expressed according to the model scale, are respectively: 37.5 cm in width, 30 cm in height with 23.75 cm of draft, while the height of the Larsen-type sheet pile is 39.5 cm. The test program included the calibration and reproduction, thanks to the laboratory's wave generator, of 22 different swells of irregular waves with four different levels within the channel. The waves are characterized by a Jonswap’s spectral energy distribution, with real significant wave heights between 0.20 and 1.00 m and peak periods between 2.0 and 5.0 s. The tests were carried out with an absorbing beach and then with a reflective quay at the end of the channel for four different design configurations, namely: the breakwater alone, the breakwater with the sheet pile in front and behind, and finally the pile alone. Through the processing of the data, acquired from the tests, it was possible to quantify the experimental transmission coefficient KT, defined as the ratio of transmitted wave to incident wave, by analyzing and commenting on the variations it undergoes as a function of the wave period and the design configuration used. The experimental values were then compared with the Macagno, Ruol and Wiegel formulas derived from literature results. The optimal configuration presented by this study, which is the one that can guarantee the least wave transmission as a function of the variability of tidal levels among the others, is represented by the breakwater with the sheet pile positioned in front.
La tesi tratta di uno studio sperimentale, effettuato con un modello fisico bidimensionale, su una barriera frangiflutti galleggiante per la difesa della riva di Piazza San Marco a Venezia. L’obiettivo principale è la determinazione di una configurazione progettuale che garantisca le migliori prestazioni in termini di coefficiente di trasmissione, al fine di limitare i fenomeni di allagamento della piazza e attenuare il moto ondoso incidente la banchina, tenendo conto dei limiti operativi di contesto. I frangiflutti galleggianti rappresentano un insieme meno convenzionale di opere di difesa, tipicamente utilizzati in fondali poco profondi e in condizioni di mare mite con onde modeste dell’ordine di 1.50-2.00 metri. I frangionde galleggianti sono strutture modulabili con grande flessibilità di impiego, economiche e con limitata sensibilità dal fondale; la loro scarsa elevazione al di sopra della superficie marina garantisce sia un minor impatto visivo sia un ridotto impatto ambientale permettendo, infatti, il ricambio d’acqua e la circolazione della fauna ittica. La tipologia di frangionde considerata nello studio è π-type, una struttura scatolare dotata di estensioni verticali rivolte verso il fondale. Il modello fisico è stato realizzato, in scala geometrica non distorta 1:8, all’interno del canale ad onde del Laboratorio di Costruzioni Marittime del Dipartimento ICEA dell'Università degli studi di Padova. Nella canaletta sono state posizionate 8 sonde resistive, 4 di fronte e 4 dietro al frangiflutti, che permettono di misurare l’onda incidente e quella trasmessa oltre la struttura. Le sollecitazioni sui pali al supporto dei frangionde, al passaggio delle onde, sono state monitorate attraverso 2 celle estensimetriche mentre una videocamera ha permesso la registrazione degli spostamenti. Le dimensioni, tutte espresse in scala modello, del frangionde, opportunamente ancorato al fondale mediante boccole inserite su pali, sono rispettivamente: 37.5 cm in larghezza, 30 cm in altezza con 23.75 cm di pescaggio mentre la altezza della palancola di tipo Larsen è 39.5 cm. Il programma dei test ha previsto la calibrazione e riproduzione, grazie al generatore di moto ondoso del laboratorio, di 22 diverse mareggiate di onde irregolari con quattro diversi livelli in canaletta. Le onde sono contraddistinte da una distribuzione spettrale dell’energia di tipo Jonswap, con altezze d’onda significativa reale comprese tra 0.20 e 1.00 m e periodi di picco compreso tra 2 e 5 s. Le prove sono state effettuate con spiaggia assorbente e successivamente con banchina riflettente alla fine della canaletta per quattro diverse configurazioni di progetto ossia: il solo frangionde, il frangionde con palancola davanti e dietro e infine la sola palancola. Grazie all’elaborazione dei dati, acquisiti dalle prove, è stato possibile quantificare il coefficiente di trasmissione sperimentale KT, definito come rapporto tra onda trasmessa e onda incidente, analizzando e commentando le variazioni che questo subisce in funzione del periodo d’onda e della configurazione di progetto utilizzata. I valori sperimentali sono stati poi confrontati con le formule di Macagno, Ruol e Wiegel derivanti da risultati di letteratura. La configurazione ottimale presentata da questo studio, ossia quella che più delle altre è in grado di garantire la minor trasmissione ondosa in funzione della variabilità dei livelli di marea, è rappresentata dal frangionde con palancola davanti.
STUDIO SPERIMENTALE SU UNA BARRIERA FRANGIFLUTTI GALLEGGIANTE PER LA DIFESA DELLA RIVA DI PIAZZA SAN MARCO A VENEZIA
PESADORI, BENEDETTA ELENA MARIA
2022/2023
Abstract
This thesis deals with an experimental study, carried out with a two-dimensional physical model, of a floating breakwater for the defense of the shoreline of Piazza San Marco in Venice. The main focus is the determination of a projectual configuration that provides the best performance in terms of transmission coefficient, in order to limit the phenomena of shore flooding and attenuate the wave motion incidental to the quay, taking into account the contextual operational limitations. Floating breakwaters represent a less conventional set of defense works, typically used in shallow water and mild sea conditions, with modest waves in the range of 1.50-2.00 meters. Floating breakwaters are modular structures with great flexibility of use, affordable and with limited sensitivity from the seabed; their low elevation above the sea level ensures both a lower visual impact and a reduced environmental impact by indeed allowing the exchange of water and the circulation of fish fauna. The type of breakwater considered in the study is π-type, a box structure with vertical extensions facing the seabed. The physical model was built in a 1:8 undistorted geometric scale, inside the wave channel of the Laboratory of Maritime Construction of the ICEA Department of the University of Padua. Eight resistive probes, 4 opposite and 4 behind the breakwater, were placed in the channel to measure the incidental wave and the wave transmitted beyond the structure. The stresses on the pillars supporting the breakwaters, as the waves passed, were monitored through 2 strain gauge cells while a videocamera allowed the recording of the movements undergone by the model during the entire duration of the wave phenomenon. The dimensions of the wavebreaker, properly anchored to the seabed by means of bushings inserted on piles, all expressed according to the model scale, are respectively: 37.5 cm in width, 30 cm in height with 23.75 cm of draft, while the height of the Larsen-type sheet pile is 39.5 cm. The test program included the calibration and reproduction, thanks to the laboratory's wave generator, of 22 different swells of irregular waves with four different levels within the channel. The waves are characterized by a Jonswap’s spectral energy distribution, with real significant wave heights between 0.20 and 1.00 m and peak periods between 2.0 and 5.0 s. The tests were carried out with an absorbing beach and then with a reflective quay at the end of the channel for four different design configurations, namely: the breakwater alone, the breakwater with the sheet pile in front and behind, and finally the pile alone. Through the processing of the data, acquired from the tests, it was possible to quantify the experimental transmission coefficient KT, defined as the ratio of transmitted wave to incident wave, by analyzing and commenting on the variations it undergoes as a function of the wave period and the design configuration used. The experimental values were then compared with the Macagno, Ruol and Wiegel formulas derived from literature results. The optimal configuration presented by this study, which is the one that can guarantee the least wave transmission as a function of the variability of tidal levels among the others, is represented by the breakwater with the sheet pile positioned in front.File | Dimensione | Formato | |
---|---|---|---|
Pesadori_BenedettaElenaMaria.pdf
embargo fino al 11/07/2026
Dimensione
18.6 MB
Formato
Adobe PDF
|
18.6 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/48538