Rationale: Arrhythmogenic Cardiomyopathy (AC) is a familial cardiac disease, mainly caused by mutations in desmosomal genes, which accounts for most cases of stress-related arrhythmic sudden death (SD), in the young and athletes. The AC myocardium displays cardiomyocyte (CM) death and fibro-fatty lesions, causing contractile dysfunction and generating the arrhythmogenic substrate. AC is uncurable as its pathogenesis is poorly understood. This may be caused by the limitations of current AC models, which carry the disease-linked mutations selectively in CMs, thus not recapitulating human genetics, and disregarding that the myocardium is a network of multiple cell types, all expressing desmosomal proteins. Objective: Therefore, knock-in (KI) mice would be the most suited preclinical models for a comprehensive study of AC. Methods: As Desmoplakin (DSP) mutations occur in a large fraction of the Italian AC population, by using CRISPR/Cas9, we generated a KI mouse strain, harboring the Ser-to-Ala point mutation, at the murine ortholog of human S299 (S311A). Functional and structural cardiac phenotype was characterized, at different disease stages, by echocardiography, telemetry-ECG, histological, IF, ultrastructural and molecular/biochemical analyses. Results: We obtained DspS311A/WT founders, which were viable and fertile. Hearts from both DspS311A/S311A mice showed desmosome alterations, particularly evident at advanced disease stages. DspS311A/S311A mice display CM death, tissue inflammation, and fibrotic myocardial remodelling, with focal fatty lesions, which were detected in both ventricular walls. Such structural alterations were accompanied to contractile dysfunction, which worsened in time, and increased arrhythmia incidence, in both resting and adrenergic stress conditions (i.e. noradrenaline injection). Male and female mice were similarly affected, and exercise accelerated disease progression and increased the incidence of SD. On the contrary, heterozygous mice did not showed significant alterations both in heart structure and function. Conclusion. Our novel KI mice replicate the clinical phenotype of DSP-linked biventricular AC and is thus suited for the mechanistic study of AC pathogenesis.
Razionale: La cardiomiopatia aritmogena (CA) è una malattia cardiaca familiare, causata principalmente da mutazioni nei geni desmosomiali, che rappresenta la maggior parte dei casi di morte improvvisa aritmica (MIA) legata allo stress, nei giovani e negli atleti. Il miocardio CA mostra morte dei cardiomiociti (CM) e lesioni fibro-adipose, causando disfunzione contrattile e generando il substrato aritmogenico. La CA è incurabile in quanto la sua patogenesi è scarsamente compresa. Ciò potrebbe essere causato dalle limitazioni dei modelli CA attuali, che portano le mutazioni legate alla malattia selettivamente nei CM, non ricapitolando così la genetica umana e trascurando il fatto che il miocardio è una rete di molteplici tipi di cellule, tutte esprimenti le proteine desmosomiali. Obiettivo: Pertanto, i topi knock-in (KI) sarebbero i modelli preclinici più adatti per uno studio completo della CA. Metodi: Poiché le mutazioni in Desmoplachina (DSP) si verificano in una grande percentuale della popolazione CA italiana, utilizzando CRISPR / Cas9, abbiamo generato un ceppo di topo KI, che ospita la mutazione puntiforme Ser-to-Ala, nell'ortologo murino del gene umano S299 (S311A). Il fenotipo cardiaco funzionale e strutturale è stato caratterizzato, a diverse fasi della malattia, mediante ecocardiografia, telemetria-ECG, analisi istologiche, IF, ultrastrutturali e molecolari / biochimiche. Risultati: Abbiamo ottenuto fondatori DspS311A / WT, che erano vitali e fertili. I cuori di entrambi i topi DspS311A / S311A hanno mostrato alterazioni desmosomiali, particolarmente evidenti nelle fasi avanzate della malattia. I topi DspS311A / S311A mostrano morte dei CM, infiammazione del tessuto e rimodellamento fibrotico miocardico, con lesioni adipose focali, che sono state rilevate in entrambe le pareti ventricolari. Tali alterazioni strutturali sono state accompagnate da disfunzione contrattile, che è peggiorata nel tempo, e aumento dell'incidenza di aritmie, sia in condizioni di riposo che di stress adrenergico (ad esempio iniezione di noradrenalina). I topi maschi e femmine sono stati ugualmente colpiti e l'esercizio fisico ha accelerato la progressione della malattia e aumentato l'incidenza della MIA. Al contrario, i topi eterozigoti non hanno mostrato significative alterazioni sia nella struttura che nella funzione cardiaca. Conclusione. I nostri nuovi topi KI replicano il fenotipo clinico della CA biventricolare legata a DSP e sono quindi adatti per lo studio meccanicistico della patogenesi della CA.
Characterization of a novel knock-in mouse model of Desmoplakin-linked Arrhythmogenic Cardiomyopathy
MAZZARO, ANTONIO
2022/2023
Abstract
Rationale: Arrhythmogenic Cardiomyopathy (AC) is a familial cardiac disease, mainly caused by mutations in desmosomal genes, which accounts for most cases of stress-related arrhythmic sudden death (SD), in the young and athletes. The AC myocardium displays cardiomyocyte (CM) death and fibro-fatty lesions, causing contractile dysfunction and generating the arrhythmogenic substrate. AC is uncurable as its pathogenesis is poorly understood. This may be caused by the limitations of current AC models, which carry the disease-linked mutations selectively in CMs, thus not recapitulating human genetics, and disregarding that the myocardium is a network of multiple cell types, all expressing desmosomal proteins. Objective: Therefore, knock-in (KI) mice would be the most suited preclinical models for a comprehensive study of AC. Methods: As Desmoplakin (DSP) mutations occur in a large fraction of the Italian AC population, by using CRISPR/Cas9, we generated a KI mouse strain, harboring the Ser-to-Ala point mutation, at the murine ortholog of human S299 (S311A). Functional and structural cardiac phenotype was characterized, at different disease stages, by echocardiography, telemetry-ECG, histological, IF, ultrastructural and molecular/biochemical analyses. Results: We obtained DspS311A/WT founders, which were viable and fertile. Hearts from both DspS311A/S311A mice showed desmosome alterations, particularly evident at advanced disease stages. DspS311A/S311A mice display CM death, tissue inflammation, and fibrotic myocardial remodelling, with focal fatty lesions, which were detected in both ventricular walls. Such structural alterations were accompanied to contractile dysfunction, which worsened in time, and increased arrhythmia incidence, in both resting and adrenergic stress conditions (i.e. noradrenaline injection). Male and female mice were similarly affected, and exercise accelerated disease progression and increased the incidence of SD. On the contrary, heterozygous mice did not showed significant alterations both in heart structure and function. Conclusion. Our novel KI mice replicate the clinical phenotype of DSP-linked biventricular AC and is thus suited for the mechanistic study of AC pathogenesis.File | Dimensione | Formato | |
---|---|---|---|
Mazzaro_Antonio.pdf
accesso riservato
Dimensione
25.28 MB
Formato
Adobe PDF
|
25.28 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/50403