In this thesis, we will analyze neuronal recordings obtained by multi-electrode arrays (MEAs) on in vitro neuronal cultures from prof. Vassanelli's laboratory, trying to estimate synaptic connectivity between the neurons. To this aim, we will adopt several time series analysis techniques, including transfer entropy and coincidence analysis. We will develop a simple in silico dynamical model of the biological neuronal network, building on the standard Izhikevich model and adding some realistic constraints on the network topology. The model will be use to simulate neuronal time series and validate the connectivity inference methods. The end goal of the project is being able to reliably estimate how synaptic connectivity spontaneously varies in time.

In questa tesi si analizzano registrazioni neuronali ottenute nel tramite dispositivi multi-elettrodo (multielectrode arrays, MEAs) da colture neuronali in vitro, al fine di ricostruire la connettività sinaptica. A tale scopo, si utilizzano diverse tecniche di analisi delle serie temporali, come la transfer entropy e l'analisi delle coincidenze. Si sviluppa un semplice modello dinamico in silico della rete biologica, elaborando il modello classico di Izhikevich e aggiungendovi alcuni vincoli per renderlo più realistico. Il modello viene impiegato per simulare il comportamento della rete biologica e validare i metodi di inferenza della connettività. Lo scopo ultimo di questa linea di ricerca è quello di riuscire a stimare variazioni spontanee della connettività.

”neural connectivity: a parallel in silico and in vitro analysis

NGUYEN, XUAN TUNG
2022/2023

Abstract

In this thesis, we will analyze neuronal recordings obtained by multi-electrode arrays (MEAs) on in vitro neuronal cultures from prof. Vassanelli's laboratory, trying to estimate synaptic connectivity between the neurons. To this aim, we will adopt several time series analysis techniques, including transfer entropy and coincidence analysis. We will develop a simple in silico dynamical model of the biological neuronal network, building on the standard Izhikevich model and adding some realistic constraints on the network topology. The model will be use to simulate neuronal time series and validate the connectivity inference methods. The end goal of the project is being able to reliably estimate how synaptic connectivity spontaneously varies in time.
2022
”neural connectivity: a parallel in silico and in vitro analysis
In questa tesi si analizzano registrazioni neuronali ottenute nel tramite dispositivi multi-elettrodo (multielectrode arrays, MEAs) da colture neuronali in vitro, al fine di ricostruire la connettività sinaptica. A tale scopo, si utilizzano diverse tecniche di analisi delle serie temporali, come la transfer entropy e l'analisi delle coincidenze. Si sviluppa un semplice modello dinamico in silico della rete biologica, elaborando il modello classico di Izhikevich e aggiungendovi alcuni vincoli per renderlo più realistico. Il modello viene impiegato per simulare il comportamento della rete biologica e validare i metodi di inferenza della connettività. Lo scopo ultimo di questa linea di ricerca è quello di riuscire a stimare variazioni spontanee della connettività.
Transfer entropy
Biological neural
Network
Learning
Neuronal cultures
File in questo prodotto:
File Dimensione Formato  
Nguyen_XuanTung.pdf

accesso aperto

Dimensione 22.58 MB
Formato Adobe PDF
22.58 MB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/51030