In this thesis we explore numerical simulations, including Tensor Networks (TNs) methods, to study Hamiltonian Lattice Gauge Theories (LGTs), a numerical framework for investigating non-perturbative properties of Quantum Field Theories. We develop a model-independent approach for constructing Matrix Product Operators (MPOs) representations of 1-dimensional quasiparticles with definite momenta, and apply it to Hamiltonian Lattice Quantum Electrodynamics (QED) on a ladder geometry. By means of exact diagonalization at intermediate system sizes, we obtain the first excitation band states (the Bloch functions) representing the single-(quasi)particle states (the photons) expressed as entangled states of local lattice gauge fields. We then construct the corresponding maximally-localized Wannier functions through minimization of a spread functional. Once we identify, via a linear algebra problem, the operation that constructs the localized Wannier excitation from the ground state (dressed vacuum), we can express the creation operator, for any wavepacket of such quasiparticles, as a Matrix Product Operator. The aforementioned steps constitute a constructive strategy to prepare an arbitrary input state for a quasiparticle scattering simulation in real time, and the scattering process itself can be carried out with any standard algorithm for time-evolution with Matrix Product States.
In this thesis we explore numerical simulations, including Tensor Networks (TNs) methods, to study Hamiltonian Lattice Gauge Theories (LGTs), a numerical framework for investigating non-perturbative properties of Quantum Field Theories. We develop a model-independent approach for constructing Matrix Product Operators (MPOs) representations of 1-dimensional quasiparticles with definite momenta, and apply it to Hamiltonian Lattice Quantum Electrodynamics (QED) on a ladder geometry. By means of exact diagonalization at intermediate system sizes, we obtain the first excitation band states (the Bloch functions) representing the single-(quasi)particle states (the photons) expressed as entangled states of local lattice gauge fields. We then construct the corresponding maximally-localized Wannier functions through minimization of a spread functional. Once we identify, via a linear algebra problem, the operation that constructs the localized Wannier excitation from the ground state (dressed vacuum), we can express the creation operator, for any wavepacket of such quasiparticles, as a Matrix Product Operator. The aforementioned steps constitute a constructive strategy to prepare an arbitrary input state for a quasiparticle scattering simulation in real time, and the scattering process itself can be carried out with any standard algorithm for time-evolution with Matrix Product States.
Lattice QED photonic wavepackets on ladder geometries
MORGAVI, MATTIA
2022/2023
Abstract
In this thesis we explore numerical simulations, including Tensor Networks (TNs) methods, to study Hamiltonian Lattice Gauge Theories (LGTs), a numerical framework for investigating non-perturbative properties of Quantum Field Theories. We develop a model-independent approach for constructing Matrix Product Operators (MPOs) representations of 1-dimensional quasiparticles with definite momenta, and apply it to Hamiltonian Lattice Quantum Electrodynamics (QED) on a ladder geometry. By means of exact diagonalization at intermediate system sizes, we obtain the first excitation band states (the Bloch functions) representing the single-(quasi)particle states (the photons) expressed as entangled states of local lattice gauge fields. We then construct the corresponding maximally-localized Wannier functions through minimization of a spread functional. Once we identify, via a linear algebra problem, the operation that constructs the localized Wannier excitation from the ground state (dressed vacuum), we can express the creation operator, for any wavepacket of such quasiparticles, as a Matrix Product Operator. The aforementioned steps constitute a constructive strategy to prepare an arbitrary input state for a quasiparticle scattering simulation in real time, and the scattering process itself can be carried out with any standard algorithm for time-evolution with Matrix Product States.File | Dimensione | Formato | |
---|---|---|---|
Morgavi_Mattia.pdf
accesso aperto
Dimensione
16.71 MB
Formato
Adobe PDF
|
16.71 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/51898