Human DNA, a polymer that if extended would reach a length of about 2 meters, is the fundamental structure that encodes life. To manage these dimensions, nature has endowed DNA with a structure that is extremely solid yet flexible, capable of resisting damaging chromosomal aberrations while allowing for the elasticity needed to carry out fundamental biological processes such as replication, transcription, and the regulation of gene expression. The structural stability of the human genome is explored here through the study of Chargaff's second parity rule. This rule states that in the strands of any molecule of double-helix DNA (excluding animal mitochondria and some viruses), the quantity of adenine (A) is approximately equal to that of thymine (T), as the quantity of guanine (G) is approximately equal to that of cytosine (C). Adherence to this rule was measured using a recently published equation, which assigns a score of 1 to segments with an equivalent number of A and T, and of G and C. Segments that deviate from this equivalence receive a score of 0. A score of 1 symbolizes maximum entropy and minimum Gibbs free energy, signals of greater structural stability. A thorough analysis of the human genome was conducted by dividing the genome into segments of 200 and 25,000 nucleotides. Scores were associated with each segment, which was also annotated for the gene family to which it belongs. Special attention was then paid to genes involved in metabolism and nutrition. This study revealed an intrinsic link between structural stability and the vital functions performed by genes. Gene families that perform essential functions for the cell tend to have greater stability, presumably a safeguard mechanism to prevent damaging mutations and chromosomal aberrations. The results also revealed that some genes, particularly those involved in the regulation of metabolism, have greater structural stability.

Il DNA umano, un polimero che se esteso raggiungerebbe una lunghezza di circa 2 metri, è la struttura fondamentale che codifica la vita. Per gestire queste dimensioni, la natura ha dotato il DNA di una struttura estremamente solida ma flessibile, capace di resistere alle aberrazioni cromosomiche dannose, permettendo al contempo l’elasticità necessaria per svolgere processi biologici fondamentali come la replicazione, la trascrizione e la regolazione dell’espressione genica. La stabilità strutturale del genoma umano viene qui esplorata attraverso lo studio della seconda regola di Chargaff. Questa regola afferma che, nei singoli filamenti di una qualunque molecola di DNA a doppia elica (escludendo mitocondri animali ed alcuni virus), la quantità di adenina (A) è approssimativamente uguale a quella di timina (T), così come la quantità di guanina (G) è approssimativamente uguale a quella di citosina (C). L'aderenza a tale regola è stata misurata attraverso una recente equazione, che assegna un punteggio di 1 ai segmenti con un numero equivalente di A e T, e di G e C. Segmenti che si discostano da questa equivalenza ricevono un punteggio di 0. Il punteggio di 1 simboleggia un'entropia massima e un'energia libera di Gibbs minima, segnali di una maggiore stabilità strutturale. Un'analisi approfondita del genoma umano è stata condotta suddividendo il genoma in segmenti da 200 e 25,000 nucleotidi. I punteggi sono stati associati per ciascun segmento che è stato inoltre annotato per la famiglia genica di appartenenza. Un’attenzione particolare è stata poi rivolta ai geni coinvolti nel metabolismo e nella nutrizione. Questo studio ha rivelato un legame intrinseco tra la stabilità strutturale e le funzioni vitali svolte dai geni. Le famiglie geniche che svolgono funzioni essenziali per la cellula tendono a presentare una maggiore stabilità, presumibilmente un meccanismo di salvaguardia per prevenire mutazioni e aberrazioni cromosomiche dannose. I risultati hanno inoltre rivelato che alcuni geni, particolarmente quelli coinvolti nella regolazione del metabolismo, presentano una maggiore stabilità strutturale.

Structural Stability of Genomic Elements: An Analysis of Chargaff's Second Parity Rule with a Nutritional Perspective

ORSINI, CARMINE
2022/2023

Abstract

Human DNA, a polymer that if extended would reach a length of about 2 meters, is the fundamental structure that encodes life. To manage these dimensions, nature has endowed DNA with a structure that is extremely solid yet flexible, capable of resisting damaging chromosomal aberrations while allowing for the elasticity needed to carry out fundamental biological processes such as replication, transcription, and the regulation of gene expression. The structural stability of the human genome is explored here through the study of Chargaff's second parity rule. This rule states that in the strands of any molecule of double-helix DNA (excluding animal mitochondria and some viruses), the quantity of adenine (A) is approximately equal to that of thymine (T), as the quantity of guanine (G) is approximately equal to that of cytosine (C). Adherence to this rule was measured using a recently published equation, which assigns a score of 1 to segments with an equivalent number of A and T, and of G and C. Segments that deviate from this equivalence receive a score of 0. A score of 1 symbolizes maximum entropy and minimum Gibbs free energy, signals of greater structural stability. A thorough analysis of the human genome was conducted by dividing the genome into segments of 200 and 25,000 nucleotides. Scores were associated with each segment, which was also annotated for the gene family to which it belongs. Special attention was then paid to genes involved in metabolism and nutrition. This study revealed an intrinsic link between structural stability and the vital functions performed by genes. Gene families that perform essential functions for the cell tend to have greater stability, presumably a safeguard mechanism to prevent damaging mutations and chromosomal aberrations. The results also revealed that some genes, particularly those involved in the regulation of metabolism, have greater structural stability.
2022
Structural Stability of Genomic Elements: An Analysis of Chargaff's Second Parity Rule with a Nutritional Perspective
Il DNA umano, un polimero che se esteso raggiungerebbe una lunghezza di circa 2 metri, è la struttura fondamentale che codifica la vita. Per gestire queste dimensioni, la natura ha dotato il DNA di una struttura estremamente solida ma flessibile, capace di resistere alle aberrazioni cromosomiche dannose, permettendo al contempo l’elasticità necessaria per svolgere processi biologici fondamentali come la replicazione, la trascrizione e la regolazione dell’espressione genica. La stabilità strutturale del genoma umano viene qui esplorata attraverso lo studio della seconda regola di Chargaff. Questa regola afferma che, nei singoli filamenti di una qualunque molecola di DNA a doppia elica (escludendo mitocondri animali ed alcuni virus), la quantità di adenina (A) è approssimativamente uguale a quella di timina (T), così come la quantità di guanina (G) è approssimativamente uguale a quella di citosina (C). L'aderenza a tale regola è stata misurata attraverso una recente equazione, che assegna un punteggio di 1 ai segmenti con un numero equivalente di A e T, e di G e C. Segmenti che si discostano da questa equivalenza ricevono un punteggio di 0. Il punteggio di 1 simboleggia un'entropia massima e un'energia libera di Gibbs minima, segnali di una maggiore stabilità strutturale. Un'analisi approfondita del genoma umano è stata condotta suddividendo il genoma in segmenti da 200 e 25,000 nucleotidi. I punteggi sono stati associati per ciascun segmento che è stato inoltre annotato per la famiglia genica di appartenenza. Un’attenzione particolare è stata poi rivolta ai geni coinvolti nel metabolismo e nella nutrizione. Questo studio ha rivelato un legame intrinseco tra la stabilità strutturale e le funzioni vitali svolte dai geni. Le famiglie geniche che svolgono funzioni essenziali per la cellula tendono a presentare una maggiore stabilità, presumibilmente un meccanismo di salvaguardia per prevenire mutazioni e aberrazioni cromosomiche dannose. I risultati hanno inoltre rivelato che alcuni geni, particolarmente quelli coinvolti nella regolazione del metabolismo, presentano una maggiore stabilità strutturale.
bioinformatics
genomics
molecular biology
nutrition
metabolism
File in questo prodotto:
File Dimensione Formato  
ORSINI_CARMINE.pdf

accesso riservato

Dimensione 8.51 MB
Formato Adobe PDF
8.51 MB Adobe PDF

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/51945