Foreword: Artificial intelligence (AI) is a 21st century technological revolution with an extraordinary impact, including in the medical field. Its ability to analyse, interpret and learn from huge amounts of data is bringing transformations in the healthcare sector and in particular in digestive endoscopy, crucial for gastrointestinal health and early detection of colorectal cancer (CRC). This thesis work focuses on the application of AI in the medical field, with a case study at the Sant'Antonio Hospital in Padua, Italy, where an intelligent system was implemented to improve the CCR screening programme. Methods: In a single-centre, controlled, randomised study, subjects participating in the CCR screening programme aged 50-80 years were randomised (1:1) to receive a white light colonoscopy, with and without an intelligent system (WL+AI vs WL), capable of detecting and characterising adenomas and polyps. The endoscopists had a baseline ADR >25%. The primary objective was to assess whether the use of AI during the examination increased ADR compared to standard colonoscopies. The secondary objective was to evaluate the optimisation of AI with regard to examination duration and room occupancy. Last objective was to assess whether risk factors such as gender, patient age, AI use and withdrawal time affected ADR. Results: 245 patients (median age 63 years, [IQR 58-68]; 129 men) were included: 118 underwent standard colonoscopy and 127 underwent colonoscopy with the aid of AI. Although not statistically significant, ADR was higher in the WL+AI arm than in the standard colonoscopy arm, both in the level II screening population (41.25% vs 37.93%), in the follow-up population (50.00% vs 36.17%) and in the overall population (41.73% vs 32.20%). The mean withdrawal time was slightly higher in the WL+AI arm than in the WL arm (00:07:51 vs 00:07:18). The population considered showed that age was not a factor that statistically affected ADR, although increasing age increased the likelihood of detecting adenomas; gender was a factor that on the follow up population statistically affected ADR; AI use and withdrawal time were found to be influential factors on ADR. Conclusions: The results indicate that AI can significantly contribute to the detection of higher numbers of adenomas, especially in patients aged 50-80 years. The use of IA leads to an increase in the withdrawal time of the endoscope and this increase is justified by a positive combination with the examination quality index.
Premessa: L'intelligenza artificiale (IA) rappresenta una rivoluzione tecnologica del ventunesimo secolo con un impatto straordinario, anche nel campo medico. La sua capacità di analizzare, interpretare e apprendere da enormi quantità di dati sta apportando trasformazioni nel settore sanitario e in particolare nell'endoscopia digestiva, cruciale per la salute gastrointestinale e la diagnosi precoce del cancro del colon-retto (CCR). Questo lavoro di tesi si concentra sull'applicazione dell'IA nell'ambito medico, con un caso di studio presso l'Ospedale Sant'Antonio di Padova, dove è stato implementato un sistema intelligente per migliorare il programma di screening del CCR. Metodi: In uno studio monocentrico, controllato e randomizzato i soggetti partecipanti al programma di screening del CCR di età compresa tra i 50 e gli 80 anni sono stati randomizzati (1:1) a ricevere una colonscopia a luce bianca, con e senza un sistema intelligente (WL+AI vs WL), in grado di rilevare e caratterizzare adenomi e polipi. Gli endoscopisti avevano un ADR basale >25%. L'obiettivo primario è stato quello di valutare se l'utilizzo dell'IA durante l'esame aumentasse l'ADR rispetto alle colonscopie standard. L'obiettivo secondario è consistito nel valutare l’ottimizzazione dell’intelligenza artificiale riguardo i tempi della durata dell’esame e dell’occupazione della sala. Ultimo obiettivo è stato quello di valutare se i fattori di rischio come il sesso, l’età del paziente, l’utilizzo dell’IA e il tempo di sospensione influissero sull’ADR. Risultati: Sono stati inclusi 245 pazienti (età mediana 63 anni, [IQR 58-68]; 129 uomini): 118 sono stati sottoposti a colonscopia standard e 127 a colonscopia con l'ausilio dell'IA. Sebbene non statisticamente significativo, l'ADR è risultato più alto nel braccio WL+AI rispetto al braccio delle colonscopie standard, sia nella popolazione di screening di II livello (41,25% vs 37,93%), sia in quella di follow up (50,00% vs 36,17%) sia in quella complessiva (41,73% vs 32,20%). Il tempo medio di ritiro è risultato leggermente superiore nel braccio WL+AI rispetto a quello WL (00:07:51 vs 00:07:18). Dalla popolazione considerata è emerso che l'età non è un fattore che influisce statisticamente sull'ADR, sebbene l'aumento della stessa aumenti la probabilità di rilevare adenomi; il sesso è un fattore che sulla popolazione di follow up influisce statisticamente sull'ADR; l'utilizzo dell'IA e il tempo di sospensione sono risultati fattori influenti sull'ADR. Conclusioni: I risultati indicano che l'IA può contribuire in modo significativo al rilevamento di un numero più elevato di adenomi, soprattutto nei pazienti compresi tra i 50 e gli 80 anni. L'ausilio dell'IA comporta un aumento del tempo di sospensione dell'endoscopio e questo incremento è giustificato da una combinazione positiva con l'indice di qualità dell'esame.
Intelligenza Artificiale in Endoscopia Digestiva: protocollo di ricerca per analizzare limitazioni e benefici in un’ Azienda Ospedaliera Universitaria
DE TOMA, SIMONA
2022/2023
Abstract
Foreword: Artificial intelligence (AI) is a 21st century technological revolution with an extraordinary impact, including in the medical field. Its ability to analyse, interpret and learn from huge amounts of data is bringing transformations in the healthcare sector and in particular in digestive endoscopy, crucial for gastrointestinal health and early detection of colorectal cancer (CRC). This thesis work focuses on the application of AI in the medical field, with a case study at the Sant'Antonio Hospital in Padua, Italy, where an intelligent system was implemented to improve the CCR screening programme. Methods: In a single-centre, controlled, randomised study, subjects participating in the CCR screening programme aged 50-80 years were randomised (1:1) to receive a white light colonoscopy, with and without an intelligent system (WL+AI vs WL), capable of detecting and characterising adenomas and polyps. The endoscopists had a baseline ADR >25%. The primary objective was to assess whether the use of AI during the examination increased ADR compared to standard colonoscopies. The secondary objective was to evaluate the optimisation of AI with regard to examination duration and room occupancy. Last objective was to assess whether risk factors such as gender, patient age, AI use and withdrawal time affected ADR. Results: 245 patients (median age 63 years, [IQR 58-68]; 129 men) were included: 118 underwent standard colonoscopy and 127 underwent colonoscopy with the aid of AI. Although not statistically significant, ADR was higher in the WL+AI arm than in the standard colonoscopy arm, both in the level II screening population (41.25% vs 37.93%), in the follow-up population (50.00% vs 36.17%) and in the overall population (41.73% vs 32.20%). The mean withdrawal time was slightly higher in the WL+AI arm than in the WL arm (00:07:51 vs 00:07:18). The population considered showed that age was not a factor that statistically affected ADR, although increasing age increased the likelihood of detecting adenomas; gender was a factor that on the follow up population statistically affected ADR; AI use and withdrawal time were found to be influential factors on ADR. Conclusions: The results indicate that AI can significantly contribute to the detection of higher numbers of adenomas, especially in patients aged 50-80 years. The use of IA leads to an increase in the withdrawal time of the endoscope and this increase is justified by a positive combination with the examination quality index.File | Dimensione | Formato | |
---|---|---|---|
DeToma_Simona.pdf
accesso aperto
Dimensione
2.31 MB
Formato
Adobe PDF
|
2.31 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/53805