This thesis develops an autonomous car control system with Raspberry Pi. Two predictive models are implemented: a convolutional neural network (CNN) using machine learning and an input-based decision tree model using sensor data. The Raspberry Module controls the car hardware and acquires real-time camera data with OpenCV. A dedicated web server and event stream processor process data in real-time using the trained neural network model, facilitating real-time decision-making. Unity and Meta Quest 2 VR set create the VR interface, while a generic DIY kit from Amazon and Raspberry PI provide the car hardware inputs. This research demonstrates the potential of VR in automotive communication, enhancing autonomous car testing and user experience.

This thesis develops an autonomous car control system with Raspberry Pi. Two predictive models are implemented: a convolutional neural network (CNN) using machine learning and an input-based decision tree model using sensor data. The Raspberry Module controls the car hardware and acquires real-time camera data with OpenCV. A dedicated web server and event stream processor process data in real-time using the trained neural network model, facilitating real-time decision-making. Unity and Meta Quest 2 VR set create the VR interface, while a generic DIY kit from Amazon and Raspberry PI provide the car hardware inputs. This research demonstrates the potential of VR in automotive communication, enhancing autonomous car testing and user experience.

Embarking on the Autonomous Journey: A Strikingly Engineered Car Control System Design

COCOLI, KRISTEL
2022/2023

Abstract

This thesis develops an autonomous car control system with Raspberry Pi. Two predictive models are implemented: a convolutional neural network (CNN) using machine learning and an input-based decision tree model using sensor data. The Raspberry Module controls the car hardware and acquires real-time camera data with OpenCV. A dedicated web server and event stream processor process data in real-time using the trained neural network model, facilitating real-time decision-making. Unity and Meta Quest 2 VR set create the VR interface, while a generic DIY kit from Amazon and Raspberry PI provide the car hardware inputs. This research demonstrates the potential of VR in automotive communication, enhancing autonomous car testing and user experience.
2022
Embarking on the Autonomous Journey: A Strikingly Engineered Car Control System Design
This thesis develops an autonomous car control system with Raspberry Pi. Two predictive models are implemented: a convolutional neural network (CNN) using machine learning and an input-based decision tree model using sensor data. The Raspberry Module controls the car hardware and acquires real-time camera data with OpenCV. A dedicated web server and event stream processor process data in real-time using the trained neural network model, facilitating real-time decision-making. Unity and Meta Quest 2 VR set create the VR interface, while a generic DIY kit from Amazon and Raspberry PI provide the car hardware inputs. This research demonstrates the potential of VR in automotive communication, enhancing autonomous car testing and user experience.
Machine Learning
Raspberry Pi
Autonomous Car
Meta Quest
File in questo prodotto:
File Dimensione Formato  
Çoçoli_Kristel.pdf

accesso aperto

Dimensione 31.39 MB
Formato Adobe PDF
31.39 MB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/53841