In cardiovascular MRI, myocardial T1 mapping provides an imaging biomarker for the non-invasive characterization of the myocardial tissue, with the potential to replace invasive biopsy for the diagnosis of several pathological heart muscle conditions such as fibrosis, iron overload, or amyloid infiltration. Over the last few years, deep learning has become increasingly appealing for image reconstruction to improve upon the commonly employed user-dependent regularization terms by automatically learning image properties from the training dataset. This thesis investigates a novel neural network-based subspace MRI reconstruction method for myocardial T1 mapping, which uses a single-shot inversion-recovery radial FLASH sequence. The neural network utilized in this study is NLINV-Net, which draws inspiration from the NLINV image reconstruction technique. NLINV-Net addresses the nonlinear inverse problem for parallel imaging by unrolling the iteratively regularized Gauss-Newton method and incorporating neural network-based regularization terms into the process. It learned in a self-supervised fashion, i.e., without a reference, correlations between the individual parameters encoded with the FLASH sequence, and, consequently, a well-tuned regularization. NLINV-Net outperformed NLINV in terms of T1 precision and generated high-quality T1 maps. The T1 maps computed using NLINV-Net were comparable to the ones obtained using another baseline method, which combines parallel imaging and compressed sensing using the l1-Wavelet regularization when solving the linear inverse problem for parallel imaging. In this case, the advantage of NLINV-Net is that it removes the subjective regularization parameter tuning that comes with the forenamed benchmark method. Thus, it provides an excellent basis for myocardial T1 mapping using a single-shot inversion-recovery radial FLASH sequence.

La mappatura T1 del miocardio si è affermata come un promettente biomarker per la caratterizzazione non invasiva del muscolo cardiaco nell'ambito della risonanza magnetica cardiovascolare. Questo approccio ha il potenziale di sostituire la biopsia nella diagnosi di diverse condizioni patologiche del miocardio, come la fibrosi, l'accumulo di ferro o amiloidosi. Negli ultimi anni, il deep learning ha suscitato un crescente interesse per la ricostruzione delle immagini, portando a notevoli miglioramenti rispetto alle tecniche che richiedono la predefinizione dei parametri di regolarizzazione da parte dell'operatore, rendendo così il processo parzialmente soggettivo. Il miglioramento è reso possibile grazie alla capacità delle reti neurali di apprendere automaticamente le proprietà presenti nelle immagini del dataset utilizzato per il training. La presente tesi si focalizza sull'analisi di un nuovo metodo di ricostruzione subspaziale delle immagini di risonanza magnetica basato su reti neurali per la mappatura T1 del miocardio, che utilizza una sequenza chiamata single-shot inversion-recovery radial FLASH. È stata impiegata una rete neurale nota come NLINV-Net, la quale trae ispirazione dalla tecnica di ricostruzione delle immagini NLINV. NLINV-Net risolve il problema inverso non lineare per il parallel imaging srotolando l'iteratively regularized Gauss-Newton method e incorporando nel processo termini di regolarizzazione basati su reti neurali. La rete neurale ha appreso le correlazioni esistenti tra i singoli parametri codificati dalla sequenza FLASH in modo auto-supervisionato, ovvero senza richiedere un riferimento esterno. NLINV-Net ha dimostrato di superare NLINV per la precisione dei valori T1, producendo mappe T1 di alta qualità. Le mappe ottenute con NLINV-Net sono paragonabili a quelle ottenute con un altro metodo di riferimento, che combina parallel imaging e compressed sensing utilizzando la regolarizzazione l1-Wavelet nella risoluzione del problema lineare inverso per il parallel imaging. Il vantaggio di NLINV-Net rispetto al suddetto metodo di appoggio è quello di sbarazzarsi della predefinizione dei parametri di regolarizzazione da parte dell'operatore. In questo modo, NLINV-Net fornisce una solida base per la mappatura T1 del miocardio utilizzando la sequenza single-shot inversion-recovery radial FLASH.

Valutazione di un Metodo di Ricostruzione MRI Basato su una Rete Neurale e la Proiezione in un Sottospazio per la Mappatura T1 del Miocardio Mediante Inversion-Recovery FLASH

FANTINATO, CHIARA
2022/2023

Abstract

In cardiovascular MRI, myocardial T1 mapping provides an imaging biomarker for the non-invasive characterization of the myocardial tissue, with the potential to replace invasive biopsy for the diagnosis of several pathological heart muscle conditions such as fibrosis, iron overload, or amyloid infiltration. Over the last few years, deep learning has become increasingly appealing for image reconstruction to improve upon the commonly employed user-dependent regularization terms by automatically learning image properties from the training dataset. This thesis investigates a novel neural network-based subspace MRI reconstruction method for myocardial T1 mapping, which uses a single-shot inversion-recovery radial FLASH sequence. The neural network utilized in this study is NLINV-Net, which draws inspiration from the NLINV image reconstruction technique. NLINV-Net addresses the nonlinear inverse problem for parallel imaging by unrolling the iteratively regularized Gauss-Newton method and incorporating neural network-based regularization terms into the process. It learned in a self-supervised fashion, i.e., without a reference, correlations between the individual parameters encoded with the FLASH sequence, and, consequently, a well-tuned regularization. NLINV-Net outperformed NLINV in terms of T1 precision and generated high-quality T1 maps. The T1 maps computed using NLINV-Net were comparable to the ones obtained using another baseline method, which combines parallel imaging and compressed sensing using the l1-Wavelet regularization when solving the linear inverse problem for parallel imaging. In this case, the advantage of NLINV-Net is that it removes the subjective regularization parameter tuning that comes with the forenamed benchmark method. Thus, it provides an excellent basis for myocardial T1 mapping using a single-shot inversion-recovery radial FLASH sequence.
2022
Assessment of a Neural Network-Based Subspace MRI Reconstruction Method for Myocardial T1 Mapping Using Inversion-Recovery Radial FLASH
La mappatura T1 del miocardio si è affermata come un promettente biomarker per la caratterizzazione non invasiva del muscolo cardiaco nell'ambito della risonanza magnetica cardiovascolare. Questo approccio ha il potenziale di sostituire la biopsia nella diagnosi di diverse condizioni patologiche del miocardio, come la fibrosi, l'accumulo di ferro o amiloidosi. Negli ultimi anni, il deep learning ha suscitato un crescente interesse per la ricostruzione delle immagini, portando a notevoli miglioramenti rispetto alle tecniche che richiedono la predefinizione dei parametri di regolarizzazione da parte dell'operatore, rendendo così il processo parzialmente soggettivo. Il miglioramento è reso possibile grazie alla capacità delle reti neurali di apprendere automaticamente le proprietà presenti nelle immagini del dataset utilizzato per il training. La presente tesi si focalizza sull'analisi di un nuovo metodo di ricostruzione subspaziale delle immagini di risonanza magnetica basato su reti neurali per la mappatura T1 del miocardio, che utilizza una sequenza chiamata single-shot inversion-recovery radial FLASH. È stata impiegata una rete neurale nota come NLINV-Net, la quale trae ispirazione dalla tecnica di ricostruzione delle immagini NLINV. NLINV-Net risolve il problema inverso non lineare per il parallel imaging srotolando l'iteratively regularized Gauss-Newton method e incorporando nel processo termini di regolarizzazione basati su reti neurali. La rete neurale ha appreso le correlazioni esistenti tra i singoli parametri codificati dalla sequenza FLASH in modo auto-supervisionato, ovvero senza richiedere un riferimento esterno. NLINV-Net ha dimostrato di superare NLINV per la precisione dei valori T1, producendo mappe T1 di alta qualità. Le mappe ottenute con NLINV-Net sono paragonabili a quelle ottenute con un altro metodo di riferimento, che combina parallel imaging e compressed sensing utilizzando la regolarizzazione l1-Wavelet nella risoluzione del problema lineare inverso per il parallel imaging. Il vantaggio di NLINV-Net rispetto al suddetto metodo di appoggio è quello di sbarazzarsi della predefinizione dei parametri di regolarizzazione da parte dell'operatore. In questo modo, NLINV-Net fornisce una solida base per la mappatura T1 del miocardio utilizzando la sequenza single-shot inversion-recovery radial FLASH.
MRI
deep learning
image reconstruction
parallel imaging
File in questo prodotto:
File Dimensione Formato  
Fantinato_Chiara.pdf

accesso aperto

Dimensione 9.71 MB
Formato Adobe PDF
9.71 MB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/55464