DTT is one of the largest superconducting Tokamak under construction with the mission to get scientific and technological proofs of power exhaust in prospect of the first nuclear fusion power plant [1, 2]. The 5.5MA maximum plasma current, 6T toroidal magnetic field at the plasma center, and 2.19m plasma radius make DTT a flexible and compact facility for testing D-shaped plasmas with different configurations of heat load spreading. The mechanical systems of DTT are designed and integrated analysing interfaces consistently with machine operating states including plasma operation, disruptions, baking, possible seismic events, testing, and maintenance. Multi-purpose ports are designed for the DTT vacuum vessel to house in each port a combination of more than one of the following three types of systems: • diagnostics probing the plasma; • auxiliary plasma heating systems (ECRH, ICRH, neutral beam injection with shielding plates in the port duct); • services (divertor and first wall cooling tubes, vacuum pumping including cryolines, in-vessel coil feeders, cables for sensors embedded into the in-vessel components). In particular, the use of multi-purpose ports introduces the need to integrate one port bellows (compensating relative displacements between the vacuum vessel and the cryostat) and more service bellows (compensating relative displacements between the services and the cryostat) in the same port. The allocation of services, diagnostics, and auxiliary plasma heating systems is defined, but the design of supports and displacement compensation systems has to be developed. Interfaces between the vessel ports and in-port systems have been analysed in order to address the structural integrity verification and the heat transfer analysis in particular during baking and plasma operation. The design parameters resulting from this analysis and verification activity will be used to prepare suitable technical specifications for the procurement of the vacuum vessel and the cryostat of DTT. The analysis has been carried out with Ansys Workbench, a commercial software that can be used for finite element method (FEM) analysis. To the standard scenario (Plasma operation, baking, cryopump regeneration), the effect of two possible incident have been superimposed: the earthquake and the ingress of liquid inside the vacuum vessel. It will be shown that important displacements might happen, in particular during baking/cryopump regeneration, and even more in the case of seismic event The most solicited components are the water pipe (displacements up to 25.8mm from the original position) and the cryopump pipes (axial displacements up to 9.3mm). However, further developments are needed, for example on the expansion loops: the stresses suffered by these pipes are too high for the selected material (stainless steel AISI316L), and so a review on their design is required.

DTT è uno dei più grandi Tokamak superconduttivi in costruzione e ha il compito di ottenere dati e prove scientifiche e tecnologiche sul rilascio di potenza termica in vista del funzionamento della prima centrale a fusione nucleare. La massima corrente di plasma da 5.5MA, il campo magnetico toroidale da 6T al centro del plasma e il raggio del plasma di 2.19m rendono DTT una macchina flessibile e compatta per testare il plasma a forma di “D” con diverse configurazioni della distribuzione del carico termico. I sistemi meccanici di DTT sono progettati e integrati analizzando le interfacce coerentemente con gli scenari operativi della macchina, che includono l’operazione con plasma, le disruzioni del plasma, il baking, gli eventuali eventi sismici, le fasi di test e le manutenzioni. Sono state progettate diverse penetrazioni (port) per la camera a vuoto di DTT e ogni port ospita una combinazione di più di uno dei seguenti tre tipi di sistemi: • sistemi di diagnostica del plasma; • sistemi ausiliari per il riscaldamento del plasma (ECRH, ICRH, iniettore di neutri con pannelli schermanti alla parete del port); • servizi (tubi di raffreddamento per divertore e prima parete, sistemi di pompaggio da vuoto compresi i tubi della criopompa, cavi d’alimentazione delle bobine all’interno della camera a vuoto, cavi per i sensori incorporati nei componenti all’interno della camera a vuoto). In particolare, l’utilizzo di questi port multiuso introduce l’esigenza di integrare dei soffietti (per compensare gli spostamenti relativi tra servizi e criostato) al port stesso. L’allocazione dei servizi, dei sistemi diagnostici e dei sistemi di riscaldamento ausiliario del plasma è definita, ma vanno realizzati i progetti dei supporti e dei sistemi di compensazione degli spostamenti. Sono state analizzate le interfacce tra il port e i sistemi all’interno del port in modo da verificare l’integrità strutturale e gli scambi termici, in particolare durante il baking e l’operazione con plasma. I parametri di progetto risultanti dall’analisi e dalle verifiche saranno usati per preparare delle specifiche tecniche per le forniture della camera a vuoto e del criostato di DTT. L'analisi è stata realizzata utilizzando Ansys Workbench, un software commerciale utilizzabile per analisi con il metodo degli elementi finiti (FEM). Agli scenari standard (operazione con plasma, baking, rigenerazione delle criopompe) sono stati sovrapposti gli effetti di due possibili eventi incidentali: il terremoto e l’ingresso di liquido all’interno della camera a vuoto. Si mostrerà che possono avvenire deformazioni importanti, in particolare durante il baking/rigenerazione delle criopompe, e ancor di più in caso di eventi sismici. I componenti più sollecitati sono il tubo dell’acqua (spostamenti fino a 25.8mm dalla posizione iniziale) e i tubi della criopompa (spostamenti assiali fino a 9.3mm). Saranno comunque necessari altri sviluppi, per esempio proprio in questi percorsi di espansione: gli stress subiti da questi tubi sono troppo alti per il materiale selezionato (acciaio inox AISI316L), e dunque è richiesta una revisione nel loro disegno.

Design and specification for the construction of the cryogenic, electrical, and cooling penetrations for the DTT vacuum vessel

FANCHIN, PATRICK
2022/2023

Abstract

DTT is one of the largest superconducting Tokamak under construction with the mission to get scientific and technological proofs of power exhaust in prospect of the first nuclear fusion power plant [1, 2]. The 5.5MA maximum plasma current, 6T toroidal magnetic field at the plasma center, and 2.19m plasma radius make DTT a flexible and compact facility for testing D-shaped plasmas with different configurations of heat load spreading. The mechanical systems of DTT are designed and integrated analysing interfaces consistently with machine operating states including plasma operation, disruptions, baking, possible seismic events, testing, and maintenance. Multi-purpose ports are designed for the DTT vacuum vessel to house in each port a combination of more than one of the following three types of systems: • diagnostics probing the plasma; • auxiliary plasma heating systems (ECRH, ICRH, neutral beam injection with shielding plates in the port duct); • services (divertor and first wall cooling tubes, vacuum pumping including cryolines, in-vessel coil feeders, cables for sensors embedded into the in-vessel components). In particular, the use of multi-purpose ports introduces the need to integrate one port bellows (compensating relative displacements between the vacuum vessel and the cryostat) and more service bellows (compensating relative displacements between the services and the cryostat) in the same port. The allocation of services, diagnostics, and auxiliary plasma heating systems is defined, but the design of supports and displacement compensation systems has to be developed. Interfaces between the vessel ports and in-port systems have been analysed in order to address the structural integrity verification and the heat transfer analysis in particular during baking and plasma operation. The design parameters resulting from this analysis and verification activity will be used to prepare suitable technical specifications for the procurement of the vacuum vessel and the cryostat of DTT. The analysis has been carried out with Ansys Workbench, a commercial software that can be used for finite element method (FEM) analysis. To the standard scenario (Plasma operation, baking, cryopump regeneration), the effect of two possible incident have been superimposed: the earthquake and the ingress of liquid inside the vacuum vessel. It will be shown that important displacements might happen, in particular during baking/cryopump regeneration, and even more in the case of seismic event The most solicited components are the water pipe (displacements up to 25.8mm from the original position) and the cryopump pipes (axial displacements up to 9.3mm). However, further developments are needed, for example on the expansion loops: the stresses suffered by these pipes are too high for the selected material (stainless steel AISI316L), and so a review on their design is required.
2022
Design and specification for the construction of the cryogenic, electrical, and cooling penetrations for the DTT vacuum vessel
DTT è uno dei più grandi Tokamak superconduttivi in costruzione e ha il compito di ottenere dati e prove scientifiche e tecnologiche sul rilascio di potenza termica in vista del funzionamento della prima centrale a fusione nucleare. La massima corrente di plasma da 5.5MA, il campo magnetico toroidale da 6T al centro del plasma e il raggio del plasma di 2.19m rendono DTT una macchina flessibile e compatta per testare il plasma a forma di “D” con diverse configurazioni della distribuzione del carico termico. I sistemi meccanici di DTT sono progettati e integrati analizzando le interfacce coerentemente con gli scenari operativi della macchina, che includono l’operazione con plasma, le disruzioni del plasma, il baking, gli eventuali eventi sismici, le fasi di test e le manutenzioni. Sono state progettate diverse penetrazioni (port) per la camera a vuoto di DTT e ogni port ospita una combinazione di più di uno dei seguenti tre tipi di sistemi: • sistemi di diagnostica del plasma; • sistemi ausiliari per il riscaldamento del plasma (ECRH, ICRH, iniettore di neutri con pannelli schermanti alla parete del port); • servizi (tubi di raffreddamento per divertore e prima parete, sistemi di pompaggio da vuoto compresi i tubi della criopompa, cavi d’alimentazione delle bobine all’interno della camera a vuoto, cavi per i sensori incorporati nei componenti all’interno della camera a vuoto). In particolare, l’utilizzo di questi port multiuso introduce l’esigenza di integrare dei soffietti (per compensare gli spostamenti relativi tra servizi e criostato) al port stesso. L’allocazione dei servizi, dei sistemi diagnostici e dei sistemi di riscaldamento ausiliario del plasma è definita, ma vanno realizzati i progetti dei supporti e dei sistemi di compensazione degli spostamenti. Sono state analizzate le interfacce tra il port e i sistemi all’interno del port in modo da verificare l’integrità strutturale e gli scambi termici, in particolare durante il baking e l’operazione con plasma. I parametri di progetto risultanti dall’analisi e dalle verifiche saranno usati per preparare delle specifiche tecniche per le forniture della camera a vuoto e del criostato di DTT. L'analisi è stata realizzata utilizzando Ansys Workbench, un software commerciale utilizzabile per analisi con il metodo degli elementi finiti (FEM). Agli scenari standard (operazione con plasma, baking, rigenerazione delle criopompe) sono stati sovrapposti gli effetti di due possibili eventi incidentali: il terremoto e l’ingresso di liquido all’interno della camera a vuoto. Si mostrerà che possono avvenire deformazioni importanti, in particolare durante il baking/rigenerazione delle criopompe, e ancor di più in caso di eventi sismici. I componenti più sollecitati sono il tubo dell’acqua (spostamenti fino a 25.8mm dalla posizione iniziale) e i tubi della criopompa (spostamenti assiali fino a 9.3mm). Saranno comunque necessari altri sviluppi, per esempio proprio in questi percorsi di espansione: gli stress subiti da questi tubi sono troppo alti per il materiale selezionato (acciaio inox AISI316L), e dunque è richiesta una revisione nel loro disegno.
Fusion
DTT
Tokamak
Cryostat
File in questo prodotto:
File Dimensione Formato  
Fanchin_Patrick.pdf

accesso aperto

Dimensione 8.33 MB
Formato Adobe PDF
8.33 MB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/55903