A large number of diseases of an inflammatory nature affects the nose, sinuses, and surrounding anatomical structures. Among these, inflammation of the adenoid is one of the most common diseases due to infection, allergy or irritation and it is often involved in a broader inflammatory process, including neighbouring structures. Adenoiditis mainly affects paediatric patients, who have adenoid tissue at their maximum development that can progress from an acute to a chronic form, to adenoid hypertrophy. In severe manifestation, hypertrophy can lead to nasal airway obstruction and clogging of the Eustachian tube in the auditory area. In these situations, the patient must undergo adenoid removal surgery. Nowadays, adenoidectomy can be performed by mechanical or electrical action by taking advantage of radiofrequency technologies. Mechanical adenoidectomy is a fast and effective method but can result in a prolonged bleeding of the affected anatomical district; on the contrary, adenoidectomy based on the use of electrical accessories, which receive a signal at high frequencies, does not cause the aforementioned complication. Telea Electronic Engineering S.r.l, which I had the opportunity to collaborate with during the internship, develops and produces biomedical electronic devices and accessories centred on QMR (Quantum Molecular Resonance) technology for which it holds the patent. QMR uses a high-frequency spectrum that at the macroscopic level ensures a precise cut on the tissue and an effective clotting effect, while preserving the surrounding regions; in fact, the technology does not produce heat and the tissue does not show signs of thermal damage and charring. The company is manufacturing of a monopolar accessory for adenoid removal. Recently, the need has emerged to make a device that has the same quality of operation as the current one, but exploits bipolar technology, given its many advantages: in particular, it assures a greater level of safety for the patient. Thanks to bipolar technology, the electric field, which propagates throughout the body, passing through the return plate usually placed on the couch where the patient lies down, now can propagate only in the interested tissue. In this thesis work, after a basic description of the anatomy of the adenoid region, adenoidectomy and QMR, the development of the final product will be illustrated, from the conceived geometry of the individual components to their assembly and use. The device was tested ex vivo on different types of animal tissue, under different operating modes of the Quantum Smart device and with different powers. The work done was subsequently implemented thanks to the COMSOL Multiphysics simulation software: an electrical analysis was conducted with regard to the electric potential, electric field and current density present in the adenotome and its surroundings when the adenotome is fed with a sinusoidal signal at a frequency of 4 MHz. This was of paramount importance in clarifying how the electric field lines propagate within the affected tissue and which geometries and materials have be used for the best results.
Una grande quantità di patologie di natura infiammatoria colpisce il naso, i seni paranasali e le strutture anatomiche circostanti. Tra queste, l’infiammazione del tessuto adenoide è tra le più comuni malattie derivanti da infezioni, allergie o irritazioni e spesso è coinvolta in un processo infiammatorio più ampio, comprendente le strutture limitrofe. L’adenoidite interessa soprattutto i pazienti pediatrici, i quali presentano un tessuto adenoide al massimo sviluppo che può passare da una forma acuta ad una cronica, fino ad arrivare all’ipertrofia adenoidea. Nei casi più gravi l’ipertrofia può portare ad ostruzione delle vie aeree nasali e della tromba di Eustachio nella zona uditiva. In queste situazioni, il paziente deve sottoporsi ad un intervento di asportazione delle adenoidi. Ad oggi, l’adenoidectomia può essere eseguita per azione meccanica o elettrica sfruttando tecnologie a radiofrequenza: l’adenoidectomia meccanica è un metodo veloce ed efficace ma porta ad un sanguinamento prolungato del distretto anatomico interessato; al contrario, l’adenoidectomia basata sull’utilizzo di accessori elettrici che ricevono un segnale a frequenze elevate, non causa la complicanza menzionata. L’azienda Telea Electronic Engineering S.r.l, con cui ho avuto modo di collaborare durante il tirocinio, progetta e sviluppa dispositivi ed accessori elettronici biomedicali incentrati sulla tecnologia QMR (Quantum Molecular Resonance) di cui detiene il brevetto. La QMR utilizza uno spettro di alte frequenze che, a livello macroscopico, assicura un taglio preciso sul tessuto e un effetto di coagulo efficace, preservando le regioni circostanti; infatti, la tecnologia non produce calore e il tessuto non presenta segni di danno termico e carbonizzazione. L’azienda è già produttrice di un accessorio monopolare per l’asportazione delle adenoidi. Negli ultimi tempi è emersa la necessità di realizzare un dispositivo che abbia la stessa qualità di funzionamento di quello attuale ma che sfrutti una tecnologia bipolare visti i numerosi vantaggi che questa comporta, primo tra tutti la maggiore sicurezza per il paziente. Grazie alla tecnologia bipolare il campo elettrico, che prima si propagava per tutto il corpo, fino alla piastra di ritorno posizionata di norma sul lettino dove il paziente si sdraia, ora si propaga solo nel tessuto interessato. In questo elaborato, dopo aver riportato alcuni cenni sull’anatomia della regione adenoidea, sull’adenoidectomia e sulla QMR, vengono esposti i passaggi che hanno portato alla realizzazione del prodotto finale, dalla geometria concepita per le componenti dell’accessorio, al loro assemblaggio e utilizzo. Infatti, il dispositivo è stato testato su differenti tipi di tessuto animale ex vivo, secondo diverse modalità di funzionamento del dispositivo Quantum Smart e con diverse potenze a display. Il lavoro svolto è stato successivamente implementato sul software di simulazione COMSOL Multiphysics: è stata condotta un’analisi elettrica di grandezze quali il potenziale elettrico, il campo elettrico e la densità di corrente presenti nell’accessorio e nell’ambiente circostante, quando l’adenotomo è alimentato con un segnale sinusoidale a una frequenza di 4 MHz. Ciò è stato di fondamentale importanza per chiarire come si propagassero le linee del campo elettrico all’interno del tessuto interessato e quali fossero le geometrie e i materiali da impiegare per ottenere i migliori risultati.
Sviluppo di un accessorio medico bipolare basato sulla tecnologia QMR per l’asportazione delle adenoidi
TOPINI, SERENA
2022/2023
Abstract
A large number of diseases of an inflammatory nature affects the nose, sinuses, and surrounding anatomical structures. Among these, inflammation of the adenoid is one of the most common diseases due to infection, allergy or irritation and it is often involved in a broader inflammatory process, including neighbouring structures. Adenoiditis mainly affects paediatric patients, who have adenoid tissue at their maximum development that can progress from an acute to a chronic form, to adenoid hypertrophy. In severe manifestation, hypertrophy can lead to nasal airway obstruction and clogging of the Eustachian tube in the auditory area. In these situations, the patient must undergo adenoid removal surgery. Nowadays, adenoidectomy can be performed by mechanical or electrical action by taking advantage of radiofrequency technologies. Mechanical adenoidectomy is a fast and effective method but can result in a prolonged bleeding of the affected anatomical district; on the contrary, adenoidectomy based on the use of electrical accessories, which receive a signal at high frequencies, does not cause the aforementioned complication. Telea Electronic Engineering S.r.l, which I had the opportunity to collaborate with during the internship, develops and produces biomedical electronic devices and accessories centred on QMR (Quantum Molecular Resonance) technology for which it holds the patent. QMR uses a high-frequency spectrum that at the macroscopic level ensures a precise cut on the tissue and an effective clotting effect, while preserving the surrounding regions; in fact, the technology does not produce heat and the tissue does not show signs of thermal damage and charring. The company is manufacturing of a monopolar accessory for adenoid removal. Recently, the need has emerged to make a device that has the same quality of operation as the current one, but exploits bipolar technology, given its many advantages: in particular, it assures a greater level of safety for the patient. Thanks to bipolar technology, the electric field, which propagates throughout the body, passing through the return plate usually placed on the couch where the patient lies down, now can propagate only in the interested tissue. In this thesis work, after a basic description of the anatomy of the adenoid region, adenoidectomy and QMR, the development of the final product will be illustrated, from the conceived geometry of the individual components to their assembly and use. The device was tested ex vivo on different types of animal tissue, under different operating modes of the Quantum Smart device and with different powers. The work done was subsequently implemented thanks to the COMSOL Multiphysics simulation software: an electrical analysis was conducted with regard to the electric potential, electric field and current density present in the adenotome and its surroundings when the adenotome is fed with a sinusoidal signal at a frequency of 4 MHz. This was of paramount importance in clarifying how the electric field lines propagate within the affected tissue and which geometries and materials have be used for the best results.File | Dimensione | Formato | |
---|---|---|---|
Topini_Serena.pdf
accesso riservato
Dimensione
6.28 MB
Formato
Adobe PDF
|
6.28 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/55989