The trachea, a crucial organ in the respiratory system, connects the larynx to the bronchi. Various pathologies or traumas can lead to tracheal damage, compromising breathing and necessitating complex surgical interventions to repair or replace the affected tissue. Furthermore, the structural and geometric complexity of the trachea makes finding an effective substitute challenging, emphasizing the need for innovative approaches to address challenges associated with interventions on this vital organ. This research aims to create a tracheal patch capable of replicating the mechanical characteristics of the portion to be replaced and promoting a biocompatible environment for regenerating damaged tracheal tissue. To achieve this, an innovative patch was designed as a synergistic combination of two key elements: the Gore® Bio-A® artificial tissue and a reinforcing structure created through additive manufacturing (AM), also known as 3D printing. Gore® Bio-A® tissue was chosen for its clinically proven effectiveness in the tracheal context and its promotion of regeneration due to its porous and flexible composition. Research conducted by the Department of Cardiothoracic and Vascular Sciences and Public Health at the University of Padua has already demonstrated the excellence of this tissue's results in tracheal defects. Meanwhile, the reinforcing structure, designed to simulate cartilaginous rings, is manufactured through 3D printing, offering advantages in producing customized structures by creating complex geometries and reducing production times. Throughout the study, three distinct 3D printers were utilized, each playing a unique role in generating samples. These samples, crafted from various biomaterials under scrutiny, underwent mechanical assessment via uniaxial tensile tests. The outcomes of these tests were then juxtaposed with those derived from mechanically analyzing the cartilaginous rings of porcine tracheas. Notably, Pebax® 2533 SD02 (Arkema) emerged as the optimal selection, showcasing mechanical properties akin to those of cartilaginous rings. The final design of the reinforcing structure, characterized by three full-section parts connected by a thin and porous network, incorporated PURASORB® PC17 (Corbion) to provide rigidity to the solid parts. This discovery was validated through careful tensile tests and evaluations of the reinforcing structure's properties. Moreover, to reduce potential post-implantation stresses on the tracheal patch, the reinforcing structure was shaped and adapted to a curved surface through heating, improving anatomical integration. In conclusion, this study represents a significant advancement in regenerative technologies for tracheal pathologies, promising to enhance the quality of life for patients. The positive results pave the way for future in vivo tests in collaboration with the medical team at the University of Padua, utilizing the tracheal patch combined with the reinforcing structure and Gore® Bio-A® tissue. These promising results fuel expectations for an innovative future in tracheal replacements.
La trachea, organo cruciale nel sistema respiratorio, collega la laringe ai bronchi. Diverse patologie o traumi possono causare danni alla trachea, compromettendo la respirazione e richiedendo interventi chirurgici complessi per riparare o sostituire il tessuto danneggiato. Inoltre, la complessità strutturale e geometrica della trachea rende difficile trovare un sostituto efficace, sottolineando la necessità di approcci innovativi per affrontare le sfide legate agli interventi su questo organo vitale. Lo scopo della ricerca è la creazione di un patch tracheale in grado di replicare le caratteristiche meccaniche della porzione da sostituire e promuovere un ambiente biocompatibile per la rigenerazione del tessuto tracheale danneggiato. Per questo motivo, si è ideato questo innovativo patch come una combinazione sinergica di due elementi chiave: il tessuto artificiale Gore® Bio-A® e una struttura di rinforzo creata attraverso la tecnologia additive manufacturing (AM), nota anche come stampa 3D. Il tessuto Gore® Bio-A® è stato scelto per la sua efficacia clinica comprovata nel contesto tracheale e, inoltre, perchè favorisce la rigenerazione grazie alla sua composizione porosa e flessibile. La ricerca condotta dal Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità Pubblica dell'Università di Padova ha già dimostrato l'eccellenza dei risultati ottenuti con questo tessuto in casi di difetti tracheali. Invece, la struttura di rinforzo, progettata per simulare gli anelli cartilaginei, è realizzata attraverso la stampa 3D, che offre vantaggi nella produzione di campioni personalizzati grazie alla capacità di creare geometrie complesse e ridurre i tempi di produzione. Durante la ricerca, tre diverse stampanti 3D sono state impiegate, ognuna contribuendo in modo specifico nella creazione dei campioni. Questi provini, creati ognuno con un diverso biomateriale preso in esame, sono stati sottoposti alla caratterizzazione meccanica attraverso test di trazione monoassiale. I risultati ricavati da questi test sono stati confrontati con quelli ottenuti caratterizzando meccanicamente gli anelli cartilaginei di trachee porcine. Il Pebax® 2533 SD02 (Arkema) ha dimostrato di essere la scelta ideale, mostrando proprietà meccaniche simili agli anelli cartilaginei. Il design finale della struttura di rinforzo, costituito da tre parti a sezione piena connesse da una rete sottile e porosa, ha incorporato il PURASORB® PC17 (Corbion) per conferire rigidità alle parti con sezione piena. Questa scoperta è stata validata attraverso attenti test di trazione e valutazioni delle proprietà della struttura di rinforzo. Per di più, al fine di ridurre potenziali tensioni post-impianto del patch tracheale, la struttura di rinforzo è stata modellata e adattata ad una superficie curva mediante riscaldamento, migliorando l'integrazione anatomica. In conclusione, questo studio rappresenta un significativo progresso nelle tecnologie rigenerative per le patologie tracheali, promettendo di migliorare la qualità di vita dei pazienti. I risultati positivi aprono la strada a futuri test in vivo in collaborazione con il gruppo medico dell'Università di Padova, utilizzando il patch tracheale combinato con la struttura di rinforzo e il tessuto Gore® Bio-A®. Questi risultati promettenti alimentano l'aspettativa di un futuro innovativo nelle sostituzioni tracheali.
Creazione di un Patch Tracheale con Stampa 3D: Progettazione, Materiali e Caratterizzazione Meccanica
BONACCORSO, MARTINA
2022/2023
Abstract
The trachea, a crucial organ in the respiratory system, connects the larynx to the bronchi. Various pathologies or traumas can lead to tracheal damage, compromising breathing and necessitating complex surgical interventions to repair or replace the affected tissue. Furthermore, the structural and geometric complexity of the trachea makes finding an effective substitute challenging, emphasizing the need for innovative approaches to address challenges associated with interventions on this vital organ. This research aims to create a tracheal patch capable of replicating the mechanical characteristics of the portion to be replaced and promoting a biocompatible environment for regenerating damaged tracheal tissue. To achieve this, an innovative patch was designed as a synergistic combination of two key elements: the Gore® Bio-A® artificial tissue and a reinforcing structure created through additive manufacturing (AM), also known as 3D printing. Gore® Bio-A® tissue was chosen for its clinically proven effectiveness in the tracheal context and its promotion of regeneration due to its porous and flexible composition. Research conducted by the Department of Cardiothoracic and Vascular Sciences and Public Health at the University of Padua has already demonstrated the excellence of this tissue's results in tracheal defects. Meanwhile, the reinforcing structure, designed to simulate cartilaginous rings, is manufactured through 3D printing, offering advantages in producing customized structures by creating complex geometries and reducing production times. Throughout the study, three distinct 3D printers were utilized, each playing a unique role in generating samples. These samples, crafted from various biomaterials under scrutiny, underwent mechanical assessment via uniaxial tensile tests. The outcomes of these tests were then juxtaposed with those derived from mechanically analyzing the cartilaginous rings of porcine tracheas. Notably, Pebax® 2533 SD02 (Arkema) emerged as the optimal selection, showcasing mechanical properties akin to those of cartilaginous rings. The final design of the reinforcing structure, characterized by three full-section parts connected by a thin and porous network, incorporated PURASORB® PC17 (Corbion) to provide rigidity to the solid parts. This discovery was validated through careful tensile tests and evaluations of the reinforcing structure's properties. Moreover, to reduce potential post-implantation stresses on the tracheal patch, the reinforcing structure was shaped and adapted to a curved surface through heating, improving anatomical integration. In conclusion, this study represents a significant advancement in regenerative technologies for tracheal pathologies, promising to enhance the quality of life for patients. The positive results pave the way for future in vivo tests in collaboration with the medical team at the University of Padua, utilizing the tracheal patch combined with the reinforcing structure and Gore® Bio-A® tissue. These promising results fuel expectations for an innovative future in tracheal replacements.File | Dimensione | Formato | |
---|---|---|---|
Bonaccorso_Martina.pdf
accesso riservato
Dimensione
7.22 MB
Formato
Adobe PDF
|
7.22 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/58342