The light chains of the kinesin-1 (KLCs) molecular motor bear a C-terminal tetratricopeptide repeat (KLCTPR) domain that is often involved in the recognition of short linear motifs (SLiMs) of cargo adaptor proteins. X-ray crystallographic studies have shown that upon cargo-peptide binding the solenoid structure of KLCTPR undergoes an “open-close” transition, the extent of which depends on SLiMs specificities. The small molecule kinesore inhibits KLCTPR interactions with organelle-specific cargo adaptors SLiMs, whilst activating kinesin-1’s function of controlling microtubule dynamics in cells thus suggesting that these functions are mechanistically coupled. Here, we employed pulsed double electron-electron resonance (DEER) spectroscopy to probe the conformational response of SLiMs/kinesore binding to KLC1TPR (TPR domain of KLC isoform 1) in the solution state. The distribution of distances between surface residues (T215C, L373C) were compared to the X-ray crystallographic ones obtained by MMM (multiscale modeling of macromolecules).

Le catene leggere del motore molecolare chinesina-1 portano al C-terminale una ripetizione tetratricopeptide (KLCTPR) spesso coinvolta nel riconoscimento delle proteine adattatrici dei cargo tramite motivi lineari corti (SLiMs). Studi di cristallografia a raggi X hanno mostrato che al momento del legame cargo-peptide la struttura a solenoide KLCTPR subisce una transizione “aperta-chiusa”, la cui estensione dipende dalle caratteristiche specifiche degli SLiMs. La piccola molecola kinesore inibisce le interazioni di KLCTPR con gli adattatori SLiMs specifici per gli organelli ed attiva contemporaneamente nella chinesina-1 la funzione di controllo della dinamica dei microtubuli nelle cellule, suggerendo che queste funzioni sono meccanicisticamente acoppiate. In questo lavoro studi di doppia risonanza paramagnetica elettrone-elettrone (DEER) hanno permesso di verificare in soluzione la transizione conformazionale in risposta al legame di SLiMs/kinesore al dominio KLC1TPR (dominio TPR della isoforma 1 di KLC). La distribuzione delle distanze misurata tra i residui T215C e L373C è stata confrontata con quella ottenuta da analisi MMM (modellizzazione multiscala di macromolecole) sulle strutture cristallografiche.

Conformational variability at the tetratricopeptide repeat domain of the kinesin-1 light chains probed by pulsed double electron-electron resonance (DEER) spectroscopy

PEIRANO, ELISA
2022/2023

Abstract

The light chains of the kinesin-1 (KLCs) molecular motor bear a C-terminal tetratricopeptide repeat (KLCTPR) domain that is often involved in the recognition of short linear motifs (SLiMs) of cargo adaptor proteins. X-ray crystallographic studies have shown that upon cargo-peptide binding the solenoid structure of KLCTPR undergoes an “open-close” transition, the extent of which depends on SLiMs specificities. The small molecule kinesore inhibits KLCTPR interactions with organelle-specific cargo adaptors SLiMs, whilst activating kinesin-1’s function of controlling microtubule dynamics in cells thus suggesting that these functions are mechanistically coupled. Here, we employed pulsed double electron-electron resonance (DEER) spectroscopy to probe the conformational response of SLiMs/kinesore binding to KLC1TPR (TPR domain of KLC isoform 1) in the solution state. The distribution of distances between surface residues (T215C, L373C) were compared to the X-ray crystallographic ones obtained by MMM (multiscale modeling of macromolecules).
2022
Conformational variability at the tetratricopeptide repeat domain of the kinesin-1 light chains probed by pulsed double electron-electron resonance (DEER) spectroscopy
Le catene leggere del motore molecolare chinesina-1 portano al C-terminale una ripetizione tetratricopeptide (KLCTPR) spesso coinvolta nel riconoscimento delle proteine adattatrici dei cargo tramite motivi lineari corti (SLiMs). Studi di cristallografia a raggi X hanno mostrato che al momento del legame cargo-peptide la struttura a solenoide KLCTPR subisce una transizione “aperta-chiusa”, la cui estensione dipende dalle caratteristiche specifiche degli SLiMs. La piccola molecola kinesore inibisce le interazioni di KLCTPR con gli adattatori SLiMs specifici per gli organelli ed attiva contemporaneamente nella chinesina-1 la funzione di controllo della dinamica dei microtubuli nelle cellule, suggerendo che queste funzioni sono meccanicisticamente acoppiate. In questo lavoro studi di doppia risonanza paramagnetica elettrone-elettrone (DEER) hanno permesso di verificare in soluzione la transizione conformazionale in risposta al legame di SLiMs/kinesore al dominio KLC1TPR (dominio TPR della isoforma 1 di KLC). La distribuzione delle distanze misurata tra i residui T215C e L373C è stata confrontata con quella ottenuta da analisi MMM (modellizzazione multiscala di macromolecole) sulle strutture cristallografiche.
DEER spectroscopy
TPR domain
SLiMs recognition
conformational shift
structural biology
File in questo prodotto:
File Dimensione Formato  
Peirano_Elisa.pdf

accesso riservato

Dimensione 2.53 MB
Formato Adobe PDF
2.53 MB Adobe PDF

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/60030