Methane possesses a global warming potential nearly 81 times greater than that of carbon dioxide. Due to its abundance and low cost, methane is an important resource in the industrial ecosystem. However, the efficient use of this gas is hindered by the distance of production sites and transportation costs. For this reason, the development of innovative approaches for converting methane into more easily transportable molecules is of particular interest in the context of sustainable economy. Current methods of chemical and physical conversion rely on polluting and energy-intensive technologies. Therefore, the biological conversion of methane has recently gained momentum. Methane monooxygenase (MMO) is an enzyme expressed by methanotrophic organisms, which use methane as their sole source of carbon. MMO converts methane into methanol, an industrial relevant molecule currently produced only from fossil sources. However, methanotrophs have proven difficult to cultivate with slow growth. There are two types of MMO: the well-studied soluble methane monooxygenase (sMMO) and the less characterized membrane-bound methane monooxygenase (pMMO). The latter is a transmembrane enzyme complex consisting of three heterotrimers (PmoC PmoA PmoB)3. Decades of efforts to express active pMMO in recombinant form were unsuccessful. This work explores the possibility of using Pichia pastoris as a host organism for the expression of pMMO. A molecular biology strategy has been implemented to assess the effective production, localization, topology, and interaction between the various subunits. Four synthetic genes have been designed and employed to assemble nine constructs. Four of these constructs were subsequently used for the transformation of Pichia pastoris. Preliminary fluorescence experiments on transformant strains confirm the effective production of the PmoB subunit. The heterologous expression of pMMO could open interesting prospects in the field of biocatalys and bioconversion, paving the way for the reduction of methane emissions through its conversion into high-value-added molecules, following the principles of the circular economy. This work represents the very first step in that direction.
Il metano ha un potenziale di riscaldamento globale 81 volte superiore a quello dell'anidride carbonica. Data l’abbondanza e il basso costo, il metano costituisce un’importante risorsa dell’ecosistema industriale, ma l’efficiente uso di questo gas è ostacolato dalla lontananza dei siti di produzione e dai costi di trasporto. Per tale motivo lo sviluppo di approcci innovativi per la conversione del metano in molecole più facilmente trasportabili rappresenta un tema di particolare interesse nell’ottica dell’ economia sostenibile. Gli attuali metodi di conversione chimica e fisica si basano su tecnologie inquinanti e ad alto dispendio energetico. Per tale motivo la conversione biologica del metano ha recentemente preso piede. La metano monoossigenasi (MMO) è un enzima espresso dagli organismi metanotrofi, i quali utilizzano il metano come sola fonte di carbonio. MMO converte il metano in metanolo, un importante molecola di interesse industriale, attualmente prodotta da sole fonti fossili. Tuttavia, i metanotrofi si sono dimostrati difficili da coltivare e con un elevato tempo di replicazione. Esistono due tipi di MMO: la ben studiata metano monoossigenasi solubile (sMMO) e la meno caratterizzata metano monoossigenasi di membrana (pMMO). Quest'ultimo è un complesso enzima di transmembrana costituito da tre etero- trimeri (PmoC PmoA PmoB)3. I decennali sforzi per l’espressione in forma ricombinante di pMMO in forma attiva sono risultati infruttuosi. Il presente lavoro esplora la possibilità di usare Pichia pastoris come organismo ospite per l'espressione di pMMO; è stata implementata una strategia di biologia molecolare per valutare l'effettiva produzione, la localizzazione, la topologia, e l'interazione tra le diverse subunità. Quattro geni sintetici sono stati progettati ed impiegati per assemblare otto costrutti. Quattro di questi costrutti sono stati successivamente impiegati per la trasformazione di Pichia pastoris. Esperimenti preliminari di fluorescenza sui ceppi trasformanti confermano l'effettiva produzione della subunità PmoB. L'espressione eterologa di pMMO potrebbe aprire interessanti prospettive nel campo della biocatalisi, spianando la via per la riduzione delle emissioni di metano, attraverso la sua conversione in molecole ad alto valore aggiunto, seguendo i principi dell’economia circolare. Questo lavoro rappresenta il primo passo in tale direzione.
Design of a Molecular Biology Workflow for Assessing the Topology of Heterologously Expressed Particulate Methane Monooxygenase from M. capsulatus
STOCCO, FILIPPO
2022/2023
Abstract
Methane possesses a global warming potential nearly 81 times greater than that of carbon dioxide. Due to its abundance and low cost, methane is an important resource in the industrial ecosystem. However, the efficient use of this gas is hindered by the distance of production sites and transportation costs. For this reason, the development of innovative approaches for converting methane into more easily transportable molecules is of particular interest in the context of sustainable economy. Current methods of chemical and physical conversion rely on polluting and energy-intensive technologies. Therefore, the biological conversion of methane has recently gained momentum. Methane monooxygenase (MMO) is an enzyme expressed by methanotrophic organisms, which use methane as their sole source of carbon. MMO converts methane into methanol, an industrial relevant molecule currently produced only from fossil sources. However, methanotrophs have proven difficult to cultivate with slow growth. There are two types of MMO: the well-studied soluble methane monooxygenase (sMMO) and the less characterized membrane-bound methane monooxygenase (pMMO). The latter is a transmembrane enzyme complex consisting of three heterotrimers (PmoC PmoA PmoB)3. Decades of efforts to express active pMMO in recombinant form were unsuccessful. This work explores the possibility of using Pichia pastoris as a host organism for the expression of pMMO. A molecular biology strategy has been implemented to assess the effective production, localization, topology, and interaction between the various subunits. Four synthetic genes have been designed and employed to assemble nine constructs. Four of these constructs were subsequently used for the transformation of Pichia pastoris. Preliminary fluorescence experiments on transformant strains confirm the effective production of the PmoB subunit. The heterologous expression of pMMO could open interesting prospects in the field of biocatalys and bioconversion, paving the way for the reduction of methane emissions through its conversion into high-value-added molecules, following the principles of the circular economy. This work represents the very first step in that direction.File | Dimensione | Formato | |
---|---|---|---|
Stocco_Filippo.pdf
accesso riservato
Dimensione
18.3 MB
Formato
Adobe PDF
|
18.3 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/60287