The New Space Economy is based on the adoption of sustainable and 'green' approaches to address environmental challenges associated with space activities. This includes the use of less polluting propellants and the implementation of propulsion systems that enable controlled satellite re-entry to limit the proliferation of space debris. It is within this context that the EARS program (European Advanced Reusable Satellite) is positioned, aiming to develop a reusable satellite capable of performing a de-orbiting manoeuvre at the end of its mission, by using a liquid propulsion system with HTP (High Test Peroxide) and propane as propellants. The main purpose of this thesis is to simulate in detail the key physical phenomena governing the operation of the engine to provide guiding tools for the preliminary design choices. A significant initial selection involves the placement of the engines, which affects the overall efficiency, i.e., the mass of propellant that must be further spent for attitude disturbance correction. Therefore, some considerations were made in terms of the equivalent specific impulse for each type of considered disturbance, thus picking the configuration that maximizes performance. Regarding the actual operation of the engine, the focus is on understanding how the main system performance parameters, such as thrust, specific impulse, mass flow rates, and the O/F ratio, vary over time. To achieve this, the phenomenon of 'blow-down' , at the base of the pressurisation of propellants, was modeled. This allowed to reflect on how the initial temperature of the tanks and the thermal power supplied to them influence the discharge, selecting the thermal power capable of stabilizing the discharge at a certain starting temperature of the tank. Moreover, by simulating the main fluidic losses along the line, it was possible to determine the maximum pressure that can be adopted in the combustion chamber. Finally, to address the challenge of cooling the combustion chamber and nozzle, a model was implemented to study the heat exchange and thus to identify the maximum temperature reached. In this way it was possible to select the most suitable cooling method and a material for the walls able to withstand the expected temperatures.
La New Space Economy si basa sull’adozione di approcci sostenibili e ‘green’ per affrontare le sfide ambientali legate alle attività spaziali, quali ad esempio l’uso di propellenti meno inquinanti e l’adozione di sistemi propulsivi che consentano il rientro controllato a terra dei satelliti, in modo da limitare la proliferazione dei detriti spaziali. È in questo contesto che si colloca il programma EARS (European Advanced Reusable satellite), il cui fine ultimo è la realizzazione di un satellite riutilizzabile, in grado cioè di effettuare una manovra di de-orbiting a fine missione grazie all’implementazione di un sistema propulsivo liquido che adotta come propellenti HTP (High Test Peroxide) e propano. Lo scopo principale di tale tesi è quello di simulare in dettaglio i principali fenomeni fisici che governano il funzionamento del motore per fornire degli strumenti guida nelle scelte progettuali preliminari. Una prima scelta rilevante consiste nella disposizione dei motori, la quale influisce sull’efficienza complessiva del sistema, ovvero sulla massa di propellente che dev’essere ulteriormente spesa per la correzione dei disturbi d’assetto. Si è quindi scelto di ragionare in termini di impulso specifico equivalente per ciascuna tipologia di disturbo considerata, scegliendo quindi la configurazione in grado di massimizzare la prestazione. Dal punto di vista invece del funzionamento vero e proprio del motore, l’interesse è rivolto a comprendere come le prestazioni del sistema, quali la spinta, l’impulso specifico, le portate di massa e il rapporto O/F, variano nel tempo e a tal fine si è quindi scelto di modellare il fenomeno del ‘blow-down’ alla base della pressurizzazione dei propellenti. In tal modo si è potuto osservare come la temperatura iniziale dei serbatoi e la potenza termica ad essi fornita influenzi la scarica, selezionando la potenza termica in grado di stabilizzare la scarica ad una certa temperatura di partenza del serbatoio. Simulando poi le principali perdite fluidiche lungo la linea, si è potuto ragionare in termini della massima pressione adottabile in camera di combustione. Infine, per rispondere alla sfida del raffreddamento della camera di combustione e dell’ugello, si è scelto di implementare un modello per lo studio dello scambio termico con lo scopo di individuare la massima temperatura raggiunta e quindi di indirizzare la scelta del metodo di raffreddamento più adatto e del materiale per le pareti in grado di sostenere le temperature previste.
Design of a 10 N HTP-Propane liquid bipropellant thruster for a reusable spacecraft
QUINZI, GIULIA
2023/2024
Abstract
The New Space Economy is based on the adoption of sustainable and 'green' approaches to address environmental challenges associated with space activities. This includes the use of less polluting propellants and the implementation of propulsion systems that enable controlled satellite re-entry to limit the proliferation of space debris. It is within this context that the EARS program (European Advanced Reusable Satellite) is positioned, aiming to develop a reusable satellite capable of performing a de-orbiting manoeuvre at the end of its mission, by using a liquid propulsion system with HTP (High Test Peroxide) and propane as propellants. The main purpose of this thesis is to simulate in detail the key physical phenomena governing the operation of the engine to provide guiding tools for the preliminary design choices. A significant initial selection involves the placement of the engines, which affects the overall efficiency, i.e., the mass of propellant that must be further spent for attitude disturbance correction. Therefore, some considerations were made in terms of the equivalent specific impulse for each type of considered disturbance, thus picking the configuration that maximizes performance. Regarding the actual operation of the engine, the focus is on understanding how the main system performance parameters, such as thrust, specific impulse, mass flow rates, and the O/F ratio, vary over time. To achieve this, the phenomenon of 'blow-down' , at the base of the pressurisation of propellants, was modeled. This allowed to reflect on how the initial temperature of the tanks and the thermal power supplied to them influence the discharge, selecting the thermal power capable of stabilizing the discharge at a certain starting temperature of the tank. Moreover, by simulating the main fluidic losses along the line, it was possible to determine the maximum pressure that can be adopted in the combustion chamber. Finally, to address the challenge of cooling the combustion chamber and nozzle, a model was implemented to study the heat exchange and thus to identify the maximum temperature reached. In this way it was possible to select the most suitable cooling method and a material for the walls able to withstand the expected temperatures.File | Dimensione | Formato | |
---|---|---|---|
Quinzi_Giulia.pdf
accesso riservato
Dimensione
4.8 MB
Formato
Adobe PDF
|
4.8 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/62228