This thesis work aims to compare different methods for estimating underground thermal conductivity. It leverages geological information and geophysical data references previously available in the study site, located in the San Bartolomeo quarter (Trento, Italy), and collected to support the planning and realization of a low-enthalpy geothermal-powered student dorm, which has since been completed. The study case has been selected for its particular interest, due to the large amount and variety of available data, including a geological section passing very close to the site, ten core-based stratigraphic profiles, eight thermal response tests (TRTs), and well-logs data. Some rock samples, representative of the local lithology, have also been collected and analyzed in the laboratories for thermal properties evaluation. For this reason, it has been possible to investigate and compare three different macro- categories of methods used to define the study site ground thermal conductivity: 1. Methods based on available literature and data, such as database-driven methods, relying on the combined use of geological information (i.e. stratigraphic profiles) and appropriate databases; 2. Laboratory methods, based on direct measurements of thermal properties of rock samples by means of laboratory instruments; 3. Field methods, such as TRTs, performed “In situ”. By comparing the different approaches, it is observed that the database-driven method leads to values of thermal conductivity which are in accordance with the TRTs results. However, this approach leads to significant sources of uncertainty, mirroring the variability of the reference values reported in the adopted databases, and may serve as a preliminary estimation of the thermal properties for GSHP feasibility analyses. The main laboratory methods reported in the literature are briefly described and a table of comparison exhibiting their characteristics is also provided. These methods generally achieve high precision in measurements but are sometimes not fully representative of the real-scale geological conditions of the ground. Specifically, among the different employed laboratory instruments, the Thermal Conductivity Scanner (TCS) is considered the most reliable and representative device and approach. The TRTs data analysis has shown the reliability of the implementation of the Infinite Line Source method (ILS) and has emphasized the significance of the researcher’s choice of interpolation range in influencing result variability; moreover, has demonstrated the importance of TRTs in determining the local underground real-scale thermal properties. Additionally, through the examination of thermal conductivity anomalies derived from TRT data analysis and deductions based on existing geological data, the study identifies and compares the most plausible position of the fault line with previous findings.
Questo lavoro di tesi si propone di confrontare diversi metodi per stimare la conducibilità termica del sottosuolo. Sfrutta informazioni geologiche e dati geofisici già disponibili nel sito di studio, situato nel quartiere di San Bartolomeo (Trento, Italia), raccolti per supportare la pianificazione e la realizzazione di un dormitorio studentesco alimentato da geotermia a bassa entalpia, ad oggi completato. Il caso di studio è stato selezionato per il suo particolare interesse, dovuto alla grande quantità e varietà di dati disponibili, tra cui una sezione geologica che passa molto vicino al sito, dieci profili stratigrafici basati su carotaggi, otto test di risposta termica (TRTs) e Well-logs. Sono stati inoltre raccolti e analizzati campioni di roccia, rappresentativi della litologia locale, nei laboratori per valutarne le proprietà termiche. Per questo motivo, è stato possibile indagare e confrontare tre diverse macrocategorie di metodi utilizzati per definire la conducibilità termica del terreno del sito di studio: 1. Metodi basati su database e letteratura, che si basano sull'uso combinato di informazioni geologiche (ad esempio profili stratigrafici) e appropriati database; 2. Metodi di laboratorio, basati su misurazioni dirette delle proprietà termiche di campioni di roccia mediante strumenti di laboratorio; 3. Metodi sul campo, come i TRT, eseguiti "In Situ". Confrontando i diversi approcci, si osserva che il metodo basato su database porta a valori di conducibilità termica in accordo con i risultati dei TRT. Tuttavia, questo approccio presenta significative fonti di incertezza, rispecchiando la variabilità dei valori di riferimento riportati nei database adottati, e può servire come stima preliminare delle proprietà termiche per analisi di fattibilità di impianti GSHP. Vengono brevemente descritti i principali metodi di laboratorio riportati nella letteratura e viene fornita una tabella di confronto che ne mostra le caratteristiche. Questi metodi raggiungono generalmente un'alta precisione nelle misurazioni ma talvolta non sono completamente rappresentativi delle condizioni geologiche reali a scala reale del terreno. In particolare, tra i diversi strumenti di laboratorio impiegati, il Thermal Conductivity Scanner (TCS) è considerato il dispositivo e l'approccio più affidabile e rappresentativo. L'analisi dei dati dei TRT ha dimostrato l'affidabilità dell'implementazione del metodo ILS (Infinite Linear Source) e ha enfatizzato l'importanza della scelta dell'intervallo di interpolazione del ricercatore nell'influenzare la variabilità dei risultati; inoltre, ha dimostrato l'importanza dei TRT nel determinare le proprietà termiche sotterranee a scala reale locale. Inoltre, attraverso l'esame delle anomalie della conducibilità termica derivate dall'analisi dei dati dei TRT e deduzioni basate sui dati geologici esistenti, lo studio identifica e confronta la posizione più plausibile della faglia con le precedenti informazioni.
Thermal Conductivity Evaluation in Shallow Geothermal Energy
DOPPIU, LORENZO
2023/2024
Abstract
This thesis work aims to compare different methods for estimating underground thermal conductivity. It leverages geological information and geophysical data references previously available in the study site, located in the San Bartolomeo quarter (Trento, Italy), and collected to support the planning and realization of a low-enthalpy geothermal-powered student dorm, which has since been completed. The study case has been selected for its particular interest, due to the large amount and variety of available data, including a geological section passing very close to the site, ten core-based stratigraphic profiles, eight thermal response tests (TRTs), and well-logs data. Some rock samples, representative of the local lithology, have also been collected and analyzed in the laboratories for thermal properties evaluation. For this reason, it has been possible to investigate and compare three different macro- categories of methods used to define the study site ground thermal conductivity: 1. Methods based on available literature and data, such as database-driven methods, relying on the combined use of geological information (i.e. stratigraphic profiles) and appropriate databases; 2. Laboratory methods, based on direct measurements of thermal properties of rock samples by means of laboratory instruments; 3. Field methods, such as TRTs, performed “In situ”. By comparing the different approaches, it is observed that the database-driven method leads to values of thermal conductivity which are in accordance with the TRTs results. However, this approach leads to significant sources of uncertainty, mirroring the variability of the reference values reported in the adopted databases, and may serve as a preliminary estimation of the thermal properties for GSHP feasibility analyses. The main laboratory methods reported in the literature are briefly described and a table of comparison exhibiting their characteristics is also provided. These methods generally achieve high precision in measurements but are sometimes not fully representative of the real-scale geological conditions of the ground. Specifically, among the different employed laboratory instruments, the Thermal Conductivity Scanner (TCS) is considered the most reliable and representative device and approach. The TRTs data analysis has shown the reliability of the implementation of the Infinite Line Source method (ILS) and has emphasized the significance of the researcher’s choice of interpolation range in influencing result variability; moreover, has demonstrated the importance of TRTs in determining the local underground real-scale thermal properties. Additionally, through the examination of thermal conductivity anomalies derived from TRT data analysis and deductions based on existing geological data, the study identifies and compares the most plausible position of the fault line with previous findings.File | Dimensione | Formato | |
---|---|---|---|
DOPPIU_LORENZO.pdf
accesso aperto
Dimensione
214.94 MB
Formato
Adobe PDF
|
214.94 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/62268