The aviation industry, responsible for 2% of anthropogenic emissions, faces the challenge of achieving net zero emissions by 2050. The International Civil Aviation Organization (ICAO) highlights the importance of supporting technological and operational advances in the coming years, identifying Sustainable Aviation Fuels (SAFs) as a crucial solution. Regulatory initiatives, exemplified by the European Commission's Fit for 55 program and ReFuel EU Aviation initiative, aim to increase the presence of SAFs at EU airports, in line with broader emissions reduction goals. Although they currently make up less than 0.1% of aviation fuels, SAFs, particularly drop-in variants, are expected to rise to 6% by 2030, with a long-term goal of reaching 70% by 2050 in Europe. This thesis conducts a comparative life cycle assessment (LCA) to examine the environmental impacts of SAFs derived from alcohol-to-jet (ATJ) pathways. Focusing on lignocellulosic biomass in the European context, the study analyzes six "well-to-wings" scenarios, that is, from biomass farming to fuel combustion. These scenarios differ in terms of the lignocellulosic biomass chosen (e.g., herbaceous energy crops, residues) and chemical intermediates (e.g., ethanol, isobutanol, or isobutene) derived from the respective fermentation processes and subsequently converted to SAF. Using a country-specific approach, the research clarifies regional variations in the environmental performance of alcohol-jet pathways, providing insights into their suitability for sustainable aviation in the European sector. Additionally, the study aimed to assess the scalability of these technologies within the European context, examining the potential for country-specific SAF production to meet jet fuel demand and evaluating the climate change mitigation potential resulting from SAF utilization in aircraft. This study contributes to the ongoing discourse on environmentally friendly alternatives to conventional jet fuels, responding to the imperative for sustainable practices in the aviation industry.
L'industria dell'aviazione, responsabile del 2% delle emissioni antropiche, deve affrontare la sfida di raggiungere emissioni nette zero entro il 2050. L'Organizzazione Internazionale dell'Aviazione Civile (ICAO) sottolinea l'importanza di sostenere i progressi tecnologici e operativi nei prossimi anni, individuando nei carburanti sostenibili per l'aviazione (SAF) una soluzione cruciale. Le iniziative normative, come il programma Fit for 55 della Commissione europea e l'iniziativa ReFuel EU Aviation, mirano ad aumentare la presenza dei SAF negli aeroporti dell'UE, in linea con gli obiettivi più ampi di riduzione delle emissioni. Sebbene attualmente costituiscano meno dello 0,1% dei carburanti per l'aviazione, si prevede che i SAF, in particolare le varianti drop-in, salgano al 6% entro il 2030, con l'obiettivo a lungo termine di raggiungere il 70% entro il 2050 in Europa. Questa tesi conduce un’analisi comparativa del ciclo di vita (LCA) per esaminare gli impatti ambientali dei SAF derivati da filiere di produzione “alcohol-to-jet” (ATJ). Concentrandosi sulla biomassa lignocellulosica nel contesto europeo, lo studio analizza sei scenari "well-to-wings", ovvero dalla coltivazione della biomassa alla combustione del carburante. Questi scenari differiscono in termini di biomassa lignocellulosica scelta (ad esempio, colture energetiche erbacee, residui) e intermedi chimici (ad esempio, etanolo, isobutanolo o isobutene) derivati dai rispettivi processi di fermentazione e successivamente convertiti in SAF. Utilizzando un approccio specifico per ogni Paese, la ricerca chiarisce le variazioni regionali nelle prestazioni ambientali dei percorsi alcool-jet, fornendo indicazioni sulla loro idoneità per un'aviazione sostenibile nel settore europeo. Inoltre, lo studio mira a valutare la scalabilità di queste tecnologie nel contesto europeo, esaminando il potenziale di produzione di SAF specifico per ogni Paese per soddisfare la domanda di carburante per aerei e valutando il potenziale di mitigazione del cambiamento climatico derivante dall'utilizzo di SAF negli aerei. Questo studio contribuisce al dibattito in corso sulle alternative ecologiche ai carburanti per jet convenzionali, rispondendo all'imperativo di garantire pratiche sostenibili nell'industria dell'aviazione.
Comparative Life Cycle Assessment of sustainable aviation fuels: Country-based study of alcohol-to-jet pathways at the European level
BEDIN, GABRIELE
2023/2024
Abstract
The aviation industry, responsible for 2% of anthropogenic emissions, faces the challenge of achieving net zero emissions by 2050. The International Civil Aviation Organization (ICAO) highlights the importance of supporting technological and operational advances in the coming years, identifying Sustainable Aviation Fuels (SAFs) as a crucial solution. Regulatory initiatives, exemplified by the European Commission's Fit for 55 program and ReFuel EU Aviation initiative, aim to increase the presence of SAFs at EU airports, in line with broader emissions reduction goals. Although they currently make up less than 0.1% of aviation fuels, SAFs, particularly drop-in variants, are expected to rise to 6% by 2030, with a long-term goal of reaching 70% by 2050 in Europe. This thesis conducts a comparative life cycle assessment (LCA) to examine the environmental impacts of SAFs derived from alcohol-to-jet (ATJ) pathways. Focusing on lignocellulosic biomass in the European context, the study analyzes six "well-to-wings" scenarios, that is, from biomass farming to fuel combustion. These scenarios differ in terms of the lignocellulosic biomass chosen (e.g., herbaceous energy crops, residues) and chemical intermediates (e.g., ethanol, isobutanol, or isobutene) derived from the respective fermentation processes and subsequently converted to SAF. Using a country-specific approach, the research clarifies regional variations in the environmental performance of alcohol-jet pathways, providing insights into their suitability for sustainable aviation in the European sector. Additionally, the study aimed to assess the scalability of these technologies within the European context, examining the potential for country-specific SAF production to meet jet fuel demand and evaluating the climate change mitigation potential resulting from SAF utilization in aircraft. This study contributes to the ongoing discourse on environmentally friendly alternatives to conventional jet fuels, responding to the imperative for sustainable practices in the aviation industry.File | Dimensione | Formato | |
---|---|---|---|
Gabriele Bedin - Master Thesis.pdf
accesso aperto
Dimensione
7.1 MB
Formato
Adobe PDF
|
7.1 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/62492